首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor 21 (FGF21) is a growth factor with pleiotropic effects on regulating lipid and glucose metabolism. Its expression is increased in skeletal muscle of mice and humans with mitochondrial disorders. However, the effects of FGF21 on skeletal muscle in response to mitochondrial respiratory chain deficiency are largely unknown. Here we demonstrate that the increased expression of FGF21 is a compensatory response to respiratory chain deficiency. The mRNA and protein levels of FGF21 were robustly raised in skeletal muscle from patients with mitochondrial myopathy or MELAS. The mammalian target of rapamycin (mTOR) phosphorylation levels and its downstream targets, Yin Yang 1 (YY1) and peroxisome proliferator-activated receptor γ, coactivator 1α (PGC-1α), were increased by FGF21 treatment in C2C12 myoblasts. Activation of the mTOR–YY1–PGC1α pathway by FGF21 in myoblasts regulated energy homeostasis as demonstrated by significant increases in intracellular ATP synthesis, oxygen consumption rate, activity of citrate synthase, glycolysis, mitochondrial DNA copy number, and induction of the expression of key energy metabolic genes. The effects of FGF21 on mitochondrial function required phosphoinositide 3-kinase (PI3K), which activates mTOR. Inhibition of PI3K, mTOR, YY1, and PGC-1α activities attenuated the stimulating effects of FGF21 on intracellular ATP levels and mitochondrial gene expression. Our findings revealed that mitochondrial respiratory chain deficiency elicited a compensatory response in skeletal muscle by increasing the FGF21 expression levels in muscle, which resulted in enhanced mitochondrial function through an mTOR–YY1–PGC1α-dependent pathway in skeletal muscle.  相似文献   

2.
Myogenesis occurs in both the prenatal and postnatal periods and the prenatal myogenesis is related to the postnatal myogenesis and the incidence of disease later in life. Glucocorticoids used as therapeutic agents for many diseases, but cause adverse effects on muscle homeostasis, including defects in fetal muscle development. The action of glucocorticoids on differentiated skeletal muscle was well studied, but their effects on myotube formation have not been well investigated. Dexamethasone (DEX) and cortisone (COR), two synthetic therapeutic glucocorticoids, suppress myotube formation in C2C12 cells. Both COR and DEX attenuated myotube formation through modulation of myogenic regulatory factors. In addition, they affected the IGF/PI3K/AKT/mTOR signaling pathway, resulting in increased proteolytic protein (atrogin-1 and MURF1) for muscle degradation and decreased ribosomal S6 phosphorylation. The current results conclude that COR and DEX inhibit myotube formation in C2C12 cells by modulating both the myogenic program via MRFs and protein metabolism via IGF/PI3K/AKT/mTOR signaling pathway.  相似文献   

3.
Chemerin is a novel adipocyte‐derived factor that induces insulin resistance in skeletal muscle. However, the effect of chemerin on skeletal muscle mitochondrial function has received little attention. In the present study, we investigated whether mitochondrial dysfunction is involved in the pathogenesis of chemerin‐mediated insulin resistance. In this study, we used recombinant adenovirus to express murine chemerin in C57BL/6 mice. The mitochondrial function and structure were evaluated in isolated soleus muscles from mice. The oxidative mechanism of mitochondrial dysfunction in cultured C2C12 myotubes exposed to recombinant chemerin was analysed by western blotting, immunofluorescence and quantitative real‐time polymerase chain reaction. The overexpression of chemerin in mice reduced the muscle mitochondrial content and increased mitochondrial autophagy, as determined by the increased conversion of LC3‐I to LC3‐II and higher expression levels of Beclin1 and autophagy‐related protein‐5 and 7. The chemerin treatment of C2C12 myotubes increased the generation of mitochondrial reactive oxygen species, concomitant with a reduced mitochondrial membrane potential and increased the occurrence of mitochondrial protein carbonyls and mitochondrial DNA deletions. Knockdown of the expression of chemokine‐like receptor 1 or the use of mitochondria‐targeting antioxidant Mito‐TEMPO restored the mitochondrial dysfunction induced by chemerin. Furthermore, chemerin exposure in C2C12 myotubes not only reduced the insulin‐stimulated phosphorylation of protein kinase B (AKT) but also dephosphorylated forkhead box O3α (FoxO3α). Chemerin‐induced mitochondrial autophagy likely through an AKT‐FoxO3α‐dependent signalling pathway. These findings provide direct evidence that chemerin may play an important role in regulating mitochondrial remodelling and function in skeletal muscle.  相似文献   

4.
The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector.  相似文献   

5.
6.
AimsThis study was performed to elucidate whether mitogen-activated protein kinases (MAPKs) are involved in the modulation of the proliferation and differentiation of skeletal muscle cells by fatty acids.Main methodsC2C12 myoblasts were cultured in differentiation medium containing 2% horse serum for 3 days, and treated with each fatty acid. Phosphorylation levels of MAPKs were examined by immunoblot analysis.Key findingsThe mono-unsaturated fatty acids (MUFAs), oleic acid (OA) and n?6 polyunsaturated fatty acids (n?6 PUFAs), linoleic acid (LA), γ-linoleic acid (GLA), and arachidonic acid (AA) increased the proliferation of C2C12 cells. On the other hand, n?3 polyunsaturated fatty acids (n?3 PUFAs) and saturated fatty acids (SFs) did not affect the proliferation of C2C12 cells. In addition, the treatment of cis-9, trans-11 conjugated linoleic acid (c9,t11 CLA) showed an increased cell proliferation. However, trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) significantly inhibited cell proliferation. Treatment of C2C12 cells with LA, OA, and c9,t11 CLA increased phosphorylation levels of ERK1/2 and JNK during proliferation. During cell differentiation, OA, LA, and c9,t11 CLA stimulated differentiation of C2C12 cells, whereas t10,c12 CLA inhibited differentiation. We also found that OA, LA, and c9, t11 CLA increased phosphorylation level of ERK1/2, but not JNK during differentiation.SignificanceThese results suggest that fatty acids are able to modulate the proliferation and differentiation of skeletal muscle and MAPKs may be involved in the modulation of the proliferation and differentiation of skeletal muscle cells by fatty acids.  相似文献   

7.
摘要 目的:探讨四物汤通过胰岛素样生长因子-1(Insulin-ike growth factors-1,IGF-1)/磷脂酰肌醇3-激酶(PI3K)/蛋白激酶B(AKT)/雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)mTOR信号通路发挥对4-乙烯基环己烯二环氧化合物(4-Vinylcyclohexene Diepoxide,VCD)诱导的卵巢衰老大鼠骨骼肌的保护作用及其分子机制。方法:选用28日龄雌性F-344大鼠,随机选取6只作为空白对照组,剩余大鼠连续腹腔注射VCD溶液(160 mg/kg/d)20天,每天阴道涂片检测动情周期,连续观察12 d无角化细胞或仅有少量角化细胞即符合"卵巢衰老"表现,经动情周期筛选出24只造模成功的大鼠,分为模型组(Model)、阳性(戊酸雌二醇,E2)对照组、四物汤高剂量(SWT-H)组和四物汤低剂量(SWT-L)组,每组6只,灌胃持续3周后取材。取大鼠骨骼肌组织进行HE染色观察病理组织结构;MASSON染色骨骼肌纤维形态变化;RT-PCR检测骨骼肌组织中各基因的mRNA水平。结果:与空白组比较,模型组骨骼肌肌纤维排列疏松,分布不均且有断点,胞浆不均,细胞核增多,出现增生的结缔组织,胶原纤维逐渐增多且肌纤维间距变宽;与模型组相比,E2组、SWT-H组与SWT-L组肌纤维排列相对整齐,胞浆较为均匀。肌肉形态较规则,纤维间距缩短,胶原纤维减少。RT-PCR结果显示,与空白组相比,模型组IGF-1、PI3K、AKT、mTOR基因的mRNA表达量明显下调,E2组、SWT-H组与SWT-L组的IGF-1、PI3K、mTOR的表达明显上升,SWT-H组AKT表达无明显变化,无统计学意义,SWT-L组AKT表达相对降低。与模型组相比,E2组、SWT-H组与SWT-L组的IGF-1、AKT、mTOR的表达明显增加,且具有剂量依赖性,PI3K表达增加,但无明显剂量依赖性。结论:四物汤可以明显改善VCD诱导的卵巢衰老大鼠的肌肉减少情况,其机制可能是通过IGF-1-PI3K-AKT-mTOR信号通路来发挥其抑制肌肉流失的作用。  相似文献   

8.
9.
TNF-related apoptosis-inducing ligand (TRAIL) is a protein that induces apoptosis in cancer cells but not in normal ones, where its effects remain to be fully understood. Previous studies have shown that in high-fat diet (HFD)-fed mice, TRAIL treatment reduced body weight gain, insulin resistance, and inflammation. TRAIL was also able to increase skeletal muscle free fatty acid oxidation. The aim of the present work was to evaluate TRAIL actions on skeletal muscle. Our in vitro data on C2C12 cells showed that TRAIL treatment significantly increased myogenin and MyHC and other hallmarks of myogenic differentiation, which were reduced by Dr5 (TRAIL receptor) silencing. In addition, TRAIL treatment significantly increased AKT phosphorylation, which was reduced by Dr5 silencing, as well as glucose uptake (alone and in combination with insulin). Our in vivo data showed that TRAIL increased myofiber size in HFD-fed mice as well as in db/db mice. This was associated with increased myogenin and PCG1α expression. In conclusion, TRAIL/DR5 pathway promotes AKT phosphorylation, skeletal muscle differentiation, and glucose uptake. These data shed light onto a pathway that might hold therapeutic potential not only for the metabolic disturbances but also for the muscle mass loss that are associated with diabetes.Subject terms: Insulin signalling, Mechanisms of disease  相似文献   

10.
The mammalian target of rapamycin (mTOR) is essential for skeletal myogenesis through controlling distinct cellular pathways. The importance of the canonical mTOR complex 1 signaling components, including raptor, S6K1, and Rheb, had been suggested in muscle maintenance, growth, and metabolism. However, the role of those components in myogenic differentiation is not entirely clear. In this study we have investigated the functions of raptor, S6K1, and Rheb in the differentiation of C2C12 mouse myoblasts. We find that although mTOR knockdown severely impairs myogenic differentiation as expected, the knockdown of raptor, as well as Rheb, enhances differentiation. Consistent with a negative role for these proteins in myogenesis, overexpression of raptor or Rheb inhibits C2C12 differentiation. On the other hand, neither knockdown nor overexpression of S6K1 has any effect. Moreover, the enhanced differentiation elicited by raptor or Rheb knockdown is accompanied by increased Akt activation, elevated IRS1 protein levels, and decreased Ser-307 (human Ser-312) phosphorylation on IRS1. Finally, IRS1 knockdown eliminated the enhancement in differentiation elicited by raptor or Rheb knockdown, suggesting that IRS1 is a critical mediator of the myogenic functions of raptor and Rheb. In conclusion, the Rheb-mTOR/raptor pathway negatively regulates myogenic differentiation by suppressing IRS1-PI3K-Akt signaling. These findings underscore the versatility of mTOR signaling in biological regulations and implicate the existence of novel mTOR complexes and/or signaling mechanism in skeletal myogenesis.  相似文献   

11.
Adenosine monophosphate-activated protein kinase (AMPK), silent mating type information regulation 2 homologue 1 (SIRT 1), and peroxisome proliferator-activated receptor γ co-activator α (PGC1α) constitute an energy sensing cellular network that controls mitochondrial biogenesis. Caloric restriction activates both AMPK and SIRT-1 to increase ATP production from fat oxidation. We characterized AMPK and SIRT 1 expression and activity in human skeletal muscle in response to dietary fat or carbohydrate intake on the background of either overfeeding or caloric restriction. AMPK phosphorylation and acetylation of PGC1α (as a measure of SIRT activity) were determined. Euglycemic-hyperinsulinemic clamp and muscle biopsies were performed in human subjects participating in 2 separate studies. In study 1, 21 lean healthy individuals were overfed for 5 days, while in study 2, 18 obese otherwise healthy individuals consumed a calorie-restricted diet for 5 days. Under both conditions - overfeeding and caloric restriction - high fat/low carbohydrate (HF/LC) diet significantly increased phosphorylation of AMPK and deacetylation of PGC1α in skeletal muscle without affecting total amounts of AMPK, PGC1α, or SIRT 1. In contrast, low fat/high carbohydrate (LF/HC) hypocaloric diet reduced phosphorylation of AMPK and deacetylation of PGC1α. Our data indicate that a relative deficiency in carbohydrate intake or, albeit less likely, a relative excess of fat intake even in the absence of caloric deprivation is sufficient to activate the AMPK-SIRT 1-PGC1α energy-sensing cellular network in human skeletal muscle.  相似文献   

12.
PI3K/AKT信号通路调控Myogenin和MCK基因的表达   总被引:1,自引:0,他引:1  
李晶  张云生  李宁  胡晓湘  石国庆  刘守仁  柳楠 《遗传》2013,35(5):637-642
骨骼肌分化过程受多个信号通路调控, PI3K/AKT信号通路是其中最重要的信号转导通路之一。PI3K/AKT信号通路可以调控骨骼肌分化, 但在染色质水平上的调控机制还不是很清楚。文章以小鼠成肌细胞(C2C12)为研究材料, 采用免疫印迹、染色质免疫共沉淀(Chromatin immunoprecipitation, ChIP)、定量PCR (Q-PCR)的方法研究PI3K/AKT信号通路调控Myogenin和MCK基因的表达。研究发现, C2C12细胞分化过程中添加PI3K/AKT信号通路激活剂处理24 h, Myogenin和MCK蛋白表达水平显著升高, 组蛋白H3K27me3去甲基化酶UTX的表达也升高, H3K27me3在Myogenin基因启动子区和MCK基因启动子及增强子区的富集与对照组相比显著降低。用PI3K/AKT信号通路抑制剂处理, 结果相反。因此, PI3K/AKT信号通路可能通过调控组蛋白去甲基化酶UTX的表达活性改变靶基因的H3K27me3的富集进而调控骨骼肌分化。  相似文献   

13.

Purpose

Neurofibrillary tangles, one of pathological features of Alzheimer’s disease, are produced by the hyperphosphorylation and aggregation of tau protein. This study aimed to investigate the effects of treadmill exercise on PI3K/AKT/mTOR signal transmission, autophagy, and cognitive ability that are involved in the hyperphosphorylation and aggregation of tau protein.

Methods

Experimental animals (NSE/htau23 mice) were divided into non-transgenic control group (Non-Tg-Control; CON; n = 7), transgenic control group (Tg-CON; n = 7), and transgenic exercise group (Tg-Treadmill Exercise; TE; n = 7). The Tg-TE group was subjected to treadmill exercise for 12 weeks. After the treadmill exercise was completed, the cognitive ability was determined by conducting underwater maze tests. Western blot was conducted to determine the phosphorylation status of PI3K/AKT/mTOR proteins and autophagy-related proteins (Beclin-1, p62, LC3-B); hyperphosphorylation and aggregation of tau protein (Ser199/202, Ser404, Thr231, PHF-1); and phosphorylation of GSK-3β, which is involved in the phosphorylation of tau protein in the cerebral cortex of experimental animals.

Results

In the Tg-TE group that was subjected to treadmill exercise for 12 weeks, abnormal mTOR phosphorylation of PI3K/AKT proteins was improved via increased phosphorylation and its activity was inhibited by increased GSK-3β phosphorylation compared with those in the Tg-CON group, which was used as the control group. In addition, the expression of Beclin-1 protein involved in autophagosome formation was increased in the Tg-TE group compared with that in the Tg-CON group, whereas that of p62 protein was reduced in the Tg-TE group compared with that in the Tg-CON group. Autophagy was activated owing to the increased expression of LC3-B that controls the completion of autophagosome formation. The hyperphosphorylation and aggregation (Ser199/202, Ser404, Thr231, PHF-1) of tau protein was found to be reduced in the Tg-TE group compared with that in the Tg-CON group. Furthermore, in the underwater maze test, the Tg-TE group showed a reduced escape time and distance compared with those of the Tg-CON group, suggesting that learning and cognitive ability were improved.

Conclusion

These findings suggest that aerobic exercise such as treadmill exercise might be an effective approach to ameliorate the pathological features (or neurofibrillary tangles) of Alzheimer’s disease.  相似文献   

14.
The mammalian target of rapamycin (mTOR) is an atypical serine/threonine kinase that responds to extracellular environment to regulate a number of cellular processes. These include cell growth, proliferation, and differentiation. Although both kinase-dependent and -independent functions of mTOR are known to be critical modulators of muscle cell differentiation and regeneration, the signaling mechanisms regulating mTOR activity during differentiation are still unclear. In this study we identify a novel mTOR interacting protein, the ubiquitin-specific protease USP9X, which acts as a negative regulator of mTOR activity and muscle differentiation. USP9X can co-immunoprecipitate mTOR with both Raptor and Rictor, components of mTOR complexes 1 and 2 (mTORC1 and -2), respectively, suggesting that it is present in both mTOR complexes. Knockdown of USP9X leads to increased mTORC1 activity in response to growth factor stimulation. Interestingly, upon initiation of differentiation of C2C12 mouse skeletal myoblasts, knockdown of USP9X increases mTORC2 activity. This increase in mTORC2 activity is accompanied by accelerated differentiation of myoblasts into myotubes. Taken together, our data describe the identification of the deubiquitinase USP9X as a novel mTORC1 and -2 binding partner that negatively regulates mTOR activity and skeletal muscle differentiation.  相似文献   

15.
Several experiments sustain healthful benefits of the flavanone naringenin (Nar) against chronic diseases including its protective effects against estrogen-related cancers. These experiments encourage Nar use in replacing estrogen treatment in post-menopausal women avoiding the serious side effects ascribed to this hormone. However, at the present, scarce data are available on the impact of Nar on E2-regulated cell functions. This study was aimed at determining the impact of Nar on the estrogen receptor (ERα and β)-dependent signals important for 17β-estradiol (E2) effect in muscle cells (rat L6 myoblasts, mouse C2C12 myoblasts, and mouse skeletal muscle satellite cells). Dietary relevant concentration of Nar delays the appearance of skeletal muscle differentiation markers (i.e., GLUT4 translocation, myogenin, and both fetal and slow MHC isoforms) and impairs E2 effects specifically hampering ERα ability to activate AKT. Intriguingly, Nar effects are specific for E2-initiating signals because IGF-I-induced AKT activation, and myoblast differentiation markers were not affected by Nar treatment. Only 7 days after Nar stimulation, early myoblast differentiation markers (i.e., myogenin, and fetal MHC) start to be accumulated in myoblasts. On the other hand, Nar stimulation activates, via ERβ, the phosphorylation of p38/MAPK involved in reducing the reactive oxygen species formation in skeletal muscle cells. As a whole, data reported here strongly sustain that although Nar action mechanisms include the impairment of ERα signals which drive muscle cells to differentiation, the effects triggered by Nar in the presence of ERβ could balance this negative effect avoiding the toxic effects produced by oxidative stress .

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0425-3) contains supplementary material, which is available to authorized users.  相似文献   

16.
Skeletal muscle secretes biologically active proteins that contribute to muscle hypertrophy in response to either exercise or dietary intake. The identification of skeletal muscle-secreted proteins that induces hypertrophy can provide critical information regarding skeletal muscle health. Dietary provitamin A, β-carotene, induces hypertrophy of the soleus muscle in mice. Here, we hypothesized that skeletal muscle produces hypertrophy-inducible secretory proteins via dietary β-carotene. Knockdown of retinoic acid receptor (RAR) γ inhibited the β-carotene-induced increase soleus muscle mass in mice. Using RNA sequencing, bioinformatic analyses, and literature searching, we predicted transglutaminase 2 (TG2) to be an all-trans retinoic acid (ATRA)-induced secretory protein in cultured C2C12 myotubes. Tg2 mRNA expression increased in ATRA- or β-carotene-stimulated myotubes and in the soleus muscle of β-carotene-treated mice. Knockdown of RARγ inhibited β-carotene-increased mRNA expression of Tg2 in the soleus muscle. ATRA increased endogenous TG2 levels in conditioned medium from myotubes. Extracellular TG2 promoted the phosphorylation of Akt, mechanistic target of rapamycin (mTOR), and ribosomal p70 S6 kinase (p70S6K), and inhibitors of mTOR, phosphatidylinositol 3-kinase, and Src (rapamycin, LY294002, and Src I1, respectively) inhibited TG2-increased phosphorylation of mTOR and p70S6K. Furthermore, extracellular TG2 promoted protein synthesis and hypertrophy in myotubes. TG2 mutant lacking transglutaminase activity exerted the same effects as wild-type TG2. Knockdown of G protein-coupled receptor 56 (GPR56) inhibited the effects of TG2 on mTOR signaling, protein synthesis, and hypertrophy. These results indicated that TG2 expression was upregulated through ATRA-mediated RARγ and that extracellular TG2 induced myotube hypertrophy by activating mTOR signaling-mediated protein synthesis through GPR56, independent of transglutaminase activity.  相似文献   

17.
Obesity is a public health problem that contributes to the development of insulin resistance, which is associated with an excessive accumulation of lipids in skeletal muscle tissue. There is evidence that soy protein can decrease the ectopic accumulation of lipids and improves insulin sensitivity; however, it is unknown whether soy isoflavones, particularly genistein, can stimulate fatty acid oxidation in the skeletal muscle. Thus, we studied the mechanism by which genistein stimulates fatty acid oxidation in the skeletal muscle. We showed that genistein induced the expression of genes of fatty acid oxidation in the skeletal muscle of Zucker fa/fa rats and in leptin receptor (ObR)-silenced C2C12 myotubes through AMPK phosphorylation. Furthermore, the genistein-mediated AMPK phosphorylation occurred via JAK2, which was possibly activated through a mechanism that involved cAMP. Additionally, the genistein-mediated induction of fatty acid oxidation genes involved PGC1α and PPARδ. As a result, we observed that genistein increased fatty acid oxidation in both the control and silenced C2C12 myotubes, as well as a decrease in the RER in mice, suggesting that genistein can be used in strategies to decrease lipid accumulation in the skeletal muscle.  相似文献   

18.
19.
The primary objective of this study was to investigate the impact of lipid oversupply on the AMPK pathway in skeletal muscle, liver, and adipose tissue. Male Wistar rats were infused with lipid emulsion (LE) or phosphate‐buffered saline for 5 h/day for 6 days. Muscles exposed to LE for 6 days exhibited increased AMPK and acetyl‐CoA carboxylase (ACC) phosphorylation, along with a greater association between AMPK and Ca2+/calmodulin‐dependent protein kinase kinase (CaMKK). No differences in muscle protein phosphatase 2C (PP2C) activity, LKB1 phosphorylation or AMPK and LKB1 association were observed. Muscle ACCβ, and adiponectin receptor 1 (AdipoR1) mRNA levels and PPARγ‐co‐activator 1α (PGC1α) protein levels were also increased in LE‐treated rats. In contrast, AMPK and ACC phosphorylation decreased and PP2C activity increased in rat livers exposed to LE. Hepatic mRNA levels of ACCα, PPARα, AdipoR1, AdipoR2, and sterol regulatory element–binding protein‐1c (SREBP1c) were also reduced after LE infusion. In adipose tissue, there was no significant alteration in AMPK or ACC phosphorylation. These results demonstrate that following lipid oversupply the AMPK pathway was enhanced in rat skeletal muscle while diminished in the liver and was unchanged in adipose tissue. CaMKK in skeletal muscle and PP2C in the liver, at least in part, appear to mediate these alterations. Alterations in AMPK pathway in the liver induced metabolic defects associated with lipid oversupply.  相似文献   

20.
Using a Transwell chamber as migration assay for mouse primordial germ cells (PGCs), we show here that these cells posses directional migration in the absence of somatic cell and defined matrix support and in response to a Kit ligand (KL) gradient or medium conditioned by Aorta/Gonad/Mesonephros and gonadal ridges. Other putative PGC chemoattractants such as SDF1 and TGFbeta did not exert any attractive action on PGCs. The chemoattractant activity of KL and conditioned medium was also evidenced by their ability to stimulate actin reorganization in PGCs. In the aim to identify downstream signaling pathways governing KL chemoattraction on PGCs, we demonstrated that in such cells KL rapidly (5 min) increased autophosphorylation of its receptor c-Kit and caused phosphorylation of the serine-threonine kinase AKT through the action of PI3K. 740Y-P peptide, a direct activator of PI3 kinase, stimulated PGC migration at levels similar to those elicited by KL. LY294002 (a specific inhibitor of PI3K) abolished KL-dependent PGC migration or the chemoattractant activity of the conditioned medium and inhibited AKT phosphorylation; Src kinase inhibitors PP2 and SU6656, caused significant reduction of the KL-dependent PGC migration and AKT phosphorylation, while U0126, a selective inhibitor of the MEK/ERK protein kinase cascade, reduced PGC migration and AKT phosphorylation at lesser extent. SU6656 completely abolished the chemoattractant activity of the conditioned medium. Finally, SB202190 (a p38 inhibitor) and rapamycin (mTOR inhibitor) did not affect PGC migration. In addition, to demonstrate that somatic cells are not essential for PGC motility and directional migration, we evidenced a novel role for KL as PGC chemoattractant and for PI3K/AKT and Src kinase, as players involved in the activation of the PGC migratory machinery and likely important for their directional movement towards the gonadal ridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号