首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine-1-phosphate (S1P), a sphingolipid metabolite that is produced inside the cells, regulates a variety of physiological and pathological responses via S1P receptors (S1P1-5). Signal transduction between cells consists of three steps; the synthesis of signaling molecules, their export to the extracellular space and their recognition by receptors. An S1P concentration gradient is essential for the migration of various cell types that express S1P receptors, such as lymphocytes, pre-osteoclasts, cancer cells and endothelial cells. To maintain this concentration gradient, plasma S1P concentration must be at a higher level. However, little is known about the molecular mechanism by which S1P is supplied to extracellular environments such as blood plasma. Here, we show that SPNS2 functions as an S1P transporter in vascular endothelial cells but not in erythrocytes and platelets. Moreover, the plasma S1P concentration of SPNS2-deficient mice was reduced to approximately 60% of wild-type, and SPNS2-deficient mice were lymphopenic. Our results demonstrate that SPNS2 is the first physiological S1P transporter in mammals and is a key determinant of lymphocyte egress from the thymus.  相似文献   

2.
Sphingosine 1-phosphate (S1P) is a lipid mediator that plays important roles in diverse cellular functions such as cell proliferation, differentiation and migration. S1P is synthesized inside the cells and subsequently released to the extracellular space, where it binds to specific receptors that are located on the plasma membranes of target cells. Accumulating recent evidence suggests that S1P transporters including SPNS2 mediate S1P release from the cells and are involved in the physiological functions of S1P. In this review, we discuss recent advances in our understanding of the mechanism and physiological functions of S1P transporters. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

3.
The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer's disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease.  相似文献   

4.
FTY720 is a novel immunomodulating drug that can be phosphorylated inside cells; its phosphorylated form, FTY720-P, binds to a sphingosine 1-phosphate (S1P) receptor, S1P1, and inhibits lymphocyte egress into the circulating blood. Although the importance of its pharmacological action has been well recognized, little is known about how FTY720-P is released from cells after its phosphorylation inside cells. Previously, we showed that zebrafish Spns2 can act as an S1P exporter from cells and is essential for zebrafish heart formation. Here, we demonstrate that human SPNS2 can transport several S1P analogues, including FTY720-P. Moreover, FTY720-P is transported by SPNS2 through the same pathway as S1P. This is the first identification of an FTY720-P transporter in cells; this finding is important for understanding FTY720 metabolism.  相似文献   

5.
摘要 目的:探讨肝细胞癌(HCC)癌组织神经降压素(NTS)、鞘氨醇-1-磷酸转运体2(SPNS2)、热休克蛋白75(Mortalin)表达与上皮间质转化(EMT)标志物、临床病理特征和预后的关系。方法:选取2010年1月~2017年1月联勤保障部队第九〇〇医院仓山院区收治的90例HCC患者,采用免疫组化法检测患者癌组织和对应癌旁组织中NTS、SPNS2、Mortalin及EMT标志物N-钙粘蛋白(N-Cad)、E-钙粘蛋白(E-Cad)表达情况。分析NTS、SPNS2、Mortalin表达与HCC患者EMT标志物、临床病理特征和预后的关系。结果:HCC癌组织中NTS、SPNS2、Mortalin、N-Cad阳性表达率高于癌旁组织,E-Cad阳性表达率低于癌旁组织(P<0.05)。Pearson相关性分析显示,HCC癌组织中NTS、SPNS2、Mortalin表达水平与N-Cad表达水平呈正相关,与E-Cad表达水平呈负相关(P<0.05)。 HCC癌组织中NTS、SPNS2、Mortalin表达与Child-Pugh分级、血管侵犯、巴塞罗那临床肝癌(BCLC)分期、淋巴结转移、远处转移有关(P<0.05)。90例HCC患者术后5年总生存率为48.89%(44/90)。Kaplan-Meier生存曲线分析显示,NTS、SPNS2、Mortalin阳性组总生存率分别低于NTS、SPNS2、Mortalin阴性组(P<0.05)。结论:HCC癌组织中NTS、SPNS2、Mortalin表达上调,与EMT、Child-Pugh分级、血管侵犯、BCLC分期、淋巴结转移、远处转移和预后有关,可作为HCC病情及预后的辅助评估指标。  相似文献   

6.
To maintain an intact barrier, epithelia eliminate dying cells by extrusion. During extrusion, a cell destined for apoptosis signals its neighboring cells to form and contract a ring of actin and myosin, which squeezes the dying cell out of the epithelium. Here, we demonstrate that the signal produced by dying cells to initiate this process is sphingosine-1-phosphate (S1P). Decreasing S1P synthesis by inhibiting sphingosine kinase activity or by blocking extracellular S1P access to its receptor prevented apoptotic cell extrusion. Extracellular S1P activates extrusion by binding the S1P(2) receptor in the cells neighboring a dying cell, as S1P(2) knockdown in these cells or its loss in a zebrafish mutant disrupted cell extrusion. Because live cells can also be extruded, we predict that this S1P pathway may also be important for driving delamination of stem cells during differentiation or invasion of cancer cells.  相似文献   

7.
The sphingosine-1-phosphate (S1P) transporter Spns2 regulates myocardial precursor migration in zebrafish and lymphocyte trafficking in mice. However, its function in cancer has not been investigated. We show here that ectopic Spns2 expression induced apoptosis and its knockdown enhanced cell migration in non-small cell lung cancer (NSCLC) cells. Metabolically, Spns2 expression increased the extracellular S1P level while its knockdown the intracellular. Pharmacological inhibition of S1P synthesis abolished the augmented cell migration mediated by Spns2 knockdown, indicating that intracellular S1P plays a key role in this process. Cell signaling studies indicated that Spns2 expression impaired GSK-3β and Stat3 mediated pro-survival pathways. Conversely, these pathways were activated by Spns2 knockdown, which explains the increased cell migration since they are also crucial for migration. Alterations of Spns2 were found to affect several enzymes involved in S1P metabolism, including sphingosine kinases, S1P phosphatases, and S1P lyase 1. Genetically, Spns2 mRNA level was found to be reduced in advanced lung cancer (LC) patients as quantified by using a small scale qPCR array. These data show for the first time that Spns2 plays key roles in regulating the cellular functions in NSCLC cells, and that its down-regulation is a potential risk factor for LC.  相似文献   

8.
The outs and the ins of sphingosine-1-phosphate in immunity   总被引:1,自引:0,他引:1  
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.  相似文献   

9.
The plant flavonoid luteolin exhibits different biological effects, including anticancer properties. Little is known on the molecular mechanisms underlying its actions in colorectal cancer (CRC). Here we investigated the effects of luteolin on colon cancer cells, focusing on the balance between ceramide and sphingosine-1-phosphate (S1P), two sphingoid mediators with opposite roles on cell fate. Using cultured cells, we found that physiological concentrations of luteolin induce the elevation of ceramide, followed by apoptotic death of colon cancer cells, but not of differentiated enterocytes. Pulse studies revealed that luteolin inhibits ceramide anabolism to complex sphingolipids. Further experiments led us to demonstrate that luteolin induces an alteration of the endoplasmic reticulum (ER)-Golgi flow of ceramide, pivotal to its metabolic processing to complex sphingolipids. We report that luteolin exerts its action by inhibiting both Akt activation, and sphingosine kinase (SphK) 2, with the consequent reduction of S1P, an Akt stimulator. S1P administration protected colon cancer cells from luteolin-induced apoptosis, most likely by an intracellular, receptor-independent mechanism. Overall this study reveals for the first time that the dietary flavonoid luteolin exerts toxic effects on colon cancer cells by inhibiting both S1P biosynthesis and ceramide traffic, suggesting its dietary introduction/supplementation as a potential strategy to improve existing treatments in CRC.  相似文献   

10.
11.
Recently identified molecular targets in pulmonary artery hypertension (PAH) include sphingosine-1-phosphate (S1P) and zinc transporter ZIP12 signaling. This study sought to determine linkages between these pathways, and with BMPR2 signaling. Lung tissues from a rat model of monocrotaline-induced PAH and therapeutic treatment with bone marrow–derived endothelial-like progenitor cells transduced to overexpress BMPR2 were studied. Multifluorescence quantitative confocal microscopy (MQCM) was applied for analysis of protein expression and localization of markers of vascular remodeling (αSMA and BMPR2), parameters of zinc homeostasis (zinc transporter SLC39A/ZIP family members 1, 10, 12 and 14; and metallothionein MT3) and S1P extracellular signaling (SPHK1, SPNS2, S1P receptor isoforms 1, 2, 3, 5) in 20–200 µm pulmonary microvessels. ZIP12 expression in whole lung tissue lysates was assessed by western blot. Spearman nonparametric correlations between MQCM readouts and hemodynamic parameters, Fulton index (FI), and right ventricular systolic pressure (RVSP) were measured. In line with PAH status, pulmonary microvessels in monocrotaline-treated animals demonstrated significant (p < .05, n = 6 per group) upregulation of αSMA (twofold) and downregulation of BMPR2 (20%). Upregulated ZIP12 (92%), MT3 (57.7%), S1PR2 (54.8%), and S1PR3 (30.3%) were also observed. Significant positive and negative correlations were demonstrated between parameters of zinc homeostasis (ZIP12, MT3), S1P signaling (S1PRs, SPNS2), and vascular remodeling (αSMA, FI, RVSP). MQCM and western blot analysis showed that monocrotaline-induced ZIP12 upregulation could be partially negated by BMPR2-targeted therapy. Our results indicate that altered zinc transport/storage and S1P signaling in the monocrotaline-induced PAH rat model are linked to each other, and could be alleviated by BMPR2-targeted therapy.  相似文献   

12.
Glioblastoma is one of the most malignant, angiogenic, and incurable tumors in humans. The aberrant communication between glioblastoma cells and tumor microenvironment represents one of the major factors regulating glioblastoma malignancy and angiogenic properties. Emerging evidence implicates sphingosine-1-phosphate signaling in the pathobiology of glioblastoma and angiogenesis, but its role in glioblastoma-endothelial crosstalk remains largely unknown. In this study, we sought to determine whether the crosstalk between glioblastoma cells and brain endothelial cells regulates sphingosine-1-phosphate signaling in the tumor microenvironment. Using human glioblastoma and brain endothelial cell lines, as well as primary brain endothelial cells derived from human glioblastoma, we report that glioblastoma-co-culture promotes the expression, activity, and plasma membrane enrichment of sphingosine kinase 2 in brain endothelial cells, leading to increased cellular level of sphingosine-1-phosphate, and significant potentiation of its secretion. In turn, extracellular sphingosine-1-phosphate stimulates glioblastoma cell proliferation, and brain endothelial cells migration and angiogenesis. We also show that, after co-culture, glioblastoma cells exhibit enhanced expression of S1P1 and S1P3, the sphingosine-1-phosphate receptors that are of paramount importance for cell growth and invasivity. Collectively, our results envision glioblastoma-endothelial crosstalk as a multi-compartmental strategy to enforce pro-tumoral sphingosine-1-phosphate signaling in the glioblastoma microenvironment.  相似文献   

13.
14.
An oncogenic role of sphingosine kinase   总被引:21,自引:0,他引:21  
Sphingosine kinase (SphK) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). S1P/SphK has been implicated as a signalling pathway to regulate diverse cellular functions [1-3], including cell growth, proliferation and survival [4-8]. We report that cells overexpressing SphK have increased enzymatic activity and acquire the transformed phenotype, as determined by focus formation, colony growth in soft agar and the ability to form tumours in NOD/SCID mice. This is the first demonstration that a wild-type lipid kinase gene acts as an oncogene. Using a chemical inhibitor of SphK, or an SphK mutant that inhibits enzyme activation, we found that SphK activity is involved in oncogenic H-Ras-mediated transformation, suggesting a novel signalling pathway for Ras activation. The findings not only point to a new signalling pathway in transformation but also to the potential of SphK inhibitors in cancer therapy.  相似文献   

15.
Recent studies reveal that metabolites of sphingomyelin are critically important for initiation and maintenance of diverse aspects of immune cell activation and function. The conversion of sphingomyelin to ceramide, sphingosine, or sphingosine-1-phosphate (S1P) provides interconvertible metabolites with distinct biological activities. Whereas ceramide and sphingosine function to induce apoptosis and to dampen mast cell responsiveness, S1P functions as a chemoattractant and can up-regulate some effector responses. Many of the S1P effects are mediated through S1P receptor family members (S1P(1-5)). S1P(1), which is required for thymocyte emigration and lymphocyte recirculation, is also essential for Ag-induced mast cell chemotaxis, whereas S1P(2) is important for mast cell degranulation. S1P is released to the extracellular milieu by Ag-stimulated mast cells, enhancing inflammatory cell functions. Modulation of S1P receptor expression profiles, and of enzymes involved in sphingolipid metabolism, particularly sphingosine kinases, are key in balancing mast cell and immune cell responses. Current efforts are unraveling the complex underlying mechanisms regulating the sphingolipid pathway. Pharmacological intervention of these key processes may hold promise for controlling unwanted immune responses.  相似文献   

16.
17.
The sphingosine kinases (sphingosine kinase-1 and -2) have been implicated in a variety of physiological functions. Discerning their mechanism of action is complicated because in addition to producing the potent lipid second messenger sphingosine-1-phosphate, sphingosine kinases, both by producing sphingosine-1-phosphate and consuming sphingosine, have profound effects on sphingolipid metabolism. Sphingosine kinase-1 translocates to the plasma membrane upon agonist stimulation and this translocation is essential for the pro-oncogenic properties of this enzyme. Many of the enzymes of sphingolipid metabolism, including the enzymes that degrade sphingosine-1-phosphate, are membrane bound with restricted subcellular distributions. In the work described here we explore how subcellular localization of sphingosine kinase-1 affects the downstream metabolism of sphingosine-1-phosphate and the access of sphingosine kinase to its substrates. We find, surprisingly, that restricting sphingosine kinase to either the plasma membrane or the endoplasmic reticulum has a negligible effect on the rate of degradation of the sphingosine-1-phosphate that is produced. This suggests that sphingosine-1-phosphate is rapidly transported between membranes. However we also find that cytosolic or endoplasmic-reticulum targeted sphingosine kinase expressed at elevated levels produces extremely high levels of dihydrosphingosine-1-phosphate. Dihydrosphingosine is a proximal precursor in ceramide biosynthesis. Our data indicate that sphingosine kinase can divert substrate from the ceramide de novo synthesis pathway. However plasma membrane-restricted sphingosine kinase cannot access the pool of dihydrosphingosine. Therefore whereas sphingosine kinase localization does not affect downstream metabolism of sphingosine-1-phosphate, localization has an important effect on the pools of substrate to which this key signaling enzyme has access.  相似文献   

18.
Accumulating research indicates that B cells are involved in anti-tumor immunity. Chronic alcohol consumption is associated with decreased survival of cancer patients. The effect of alcohol consumption on B cells in tumor-bearing hosts is unknown. Results in melanoma-bearing mice showed that chronic alcohol consumption did not alter the percentage and number of B cells in bone marrow, spleen, and lymph nodes but dramatically decreased B cells in the peripheral blood. Alcohol consumption did not alter the development of B cells in the bone marrow and did not affect follicular B cells in the spleen; however, it increased T1 B cells and decreased marginal zone B cells in the spleen. Alcohol consumption also decreased mature B cells in the blood. It did not alter the chemotactic capacity of plasma to facilitate migration of splenocytes or the chemotactic response of splenocytes to CXCL13 and CCL21. However, the response of splenocytes to sphingosine-1-phosphate was impaired in alcohol-consuming, melanoma-bearing mice. The expression of sphingosine-1-phosphate receptor-1 (S1PR1) and sphingosine-1-phosphate lyase-1 (SPL1) in splenocytes was downregulated. Taken together, these results indicate that chronic alcohol consumption decreases peripheral blood B cells by compromising B cell egress from the spleen. The downregulation of S1PR1 and SPL1 expression in alcohol-consuming, melanoma-bearing mice could be associated with compromised egress of B cells from the spleen.  相似文献   

19.
Mandala SM 《Prostaglandins》2001,64(1-4):143-156
Sphingosine-1-phosphate is a potent proliferative, survival, and morphogenetic factor, acting as an extracellular ligand for the EDG family of G-protein-coupled receptors and possibly intracellularly through as yet, unidentified targets. It is produced within most, if not all cells by phosphorylation of sphingosine, and is an abundant serum lipid that is released from activated platelets. Sphingosine and sphingosine-1-phosphate are in dynamic equilibrium with each other due to the activities of sphingosine kinase and sphingosine-1-phosphate phosphatase (SPPase). Several SPPase genes have now been cloned, first from yeast and more recently from mammalian cells. By sequence homology, these enzymes can be classified as a subset of membrane bound, Type 2 lipid phosphohydrolases that contain conserved residues within three domains predicted to be at the active site of the enzyme. Outside of the consensus motif, there is very little homology between SPPases and the other type 2 lipid phosphohydrolases in the LPP/PAP family. Type 2 phosphatase activity is Mg(+)-independent and insensitive to N-ethylmaleimide, and substrate specificity is broad for LPP enzymes, whereas SPPases are highly selective for sphingolipid substrates. SPPase activity in yeast and mammalian cells regulates intracellular sphingosine-1-phosphate levels, and also alters the levels of sphingosine and ceramide, two other signaling molecules that often oppose the actions of sphingosine-1-phosphate. Thus, loss of SPPase in yeast results in high sphingosine-1-phosphate levels and cells are more resistant to stress, and in mammalian cells, overexpression of SPPase elevates ceramide levels and provokes apoptosis.  相似文献   

20.
Neuropilins and semaphorins are known as modulators of axon guidance, angiogenesis, and organogenesis in the developing nervous system, but have been recently evidenced as also playing a role in the immune system. Here we describe the expression and role of semaphorin 3F (SEMA3F) and its receptor neuropilin-2 (NRP2) in human T cell precursors. NRP2 and SEMA3F are expressed in the human thymus, in both lymphoid and non-lymphoid compartments. SEMA3F have a repulsive effect on thymocyte migration and inhibited CXCL12- and sphingosine-1-phosphate (S1P)-induced thymocyte migration by inhibiting cytoskeleton reorganization prior to stimuli. Moreover, NRP2 and SEMA3F are expressed in human T-cell acute lymphoblastic leukemia/lymphoma primary cells. In these tumor cells, SEMA3F also blocks their migration induced by CXCL12 and S1P. Our data show that SEMA3F and NRP2 are further regulators of human thymocyte migration in physiological and pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号