首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

A study was undertaken to resolve preliminary conflicting results on the proliferation of leukemia cells observed with different c-myc antisense oligonucleotides.

Results

RNase H-active, chimeric methylphosphonodiester / phosphodiester antisense oligodeoxynucleotides targeting bases 1147–1166 of c-myc mRNA downregulated c-Myc protein and induced apoptosis and cell cycle arrest respectively in cultures of MOLT-4 and KYO1 human leukemia cells. In contrast, an RNase H-inactive, morpholino antisense oligonucleotide analogue 28-mer, simultaneously targeting the exon 2 splice acceptor site and initiation codon, reduced c-Myc protein to barely detectable levels but did not affect cell proliferation in these or other leukemia lines. The RNase H-active oligodeoxynucleotide 20-mers contained the phosphodiester linked motif CGTTG, which as an apoptosis inducing CpG oligodeoxynucleotide 5-mer of sequence type CGNNN (N = A, G, C, or T) had potent activity against MOLT-4 cells. The 5-mer mimicked the antiproliferative effects of the 20-mer in the absence of any antisense activity against c-myc mRNA, while the latter still reduced expression of c-myc in a subline of MOLT-4 cells that had been selected for resistance to CGTTA, but in this case the oligodeoxynucleotide failed to induce apoptosis or cell cycle arrest.

Conclusions

We conclude that the biological activity of the chimeric c-myc antisense 20-mers resulted from a non-antisense mechanism related to the CGTTG motif contained within the sequence, and not through downregulation of c-myc. Although the oncogene may have been implicated in the etiology of the original leukemias, expression of c-myc is apparently no longer required to sustain continuous cell proliferation in these culture lines.  相似文献   

3.
4.
In our endeavour towards the development of effective anticancer therapeutics, a novel series of isoxazole-piperazine hybrids were synthesized and evaluated for their cytotoxic activities against human liver (Huh7 and Mahlavu) and breast (MCF-7) cancer cell lines. Within series, compounds 5l-o showed the most potent cytotoxicity on all cell lines with IC50 values in the range of 0.3–3.7?μM. To explore the mechanistic aspects fundamental to the observed activity, further biological studies with 5m and 5o in liver cancer cells were carried out. We have demonstrated that 5m and 5o induce oxidative stress in PTEN adequate Huh7 and PTEN deficient Mahlavu human liver cancer cells leading to apoptosis and cell cycle arrest at different phases. Further analysis of the proteins involved in apoptosis and cell cycle revealed that 5m and 5o caused an inhibition of cell survival pathway through Akt hyperphosphorylation and apoptosis and cell cycle arrest through p53 protein activation.  相似文献   

5.
BackgroundArtematrolide A (AR-A), a guaianolide dimer isolated from Artemisia atrovirens, demonstrated significant inhibitory effect on three human hepatoma cell lines (HepG2, Huh7 and SMMC7721). The anti-cervical cancer effect and mechanism of this compound have yet to be explored. This study is to reveal the role and mechanisms of artematrolide A on cervical cancer cells, and provide the pharmacological understanding of artematrolide A.PurposeTo investigate the function and possible mechanism of artematrolide A on cervical cancer cells in vitro.MethodsHeLa S3 and SiHa cells were treated with artematrolide A at various concentrations. In this study, MTT, colony formation, cell migration and invasion, cell cycle analysis, cell apoptosis, reactive oxygen species (ROS) detection, western blotting, enzyme activity, and lactate production of artematrolide A were evaluated.ResultsArtematrolide A inhibited cell viability, proliferation, migration and invasion in a dose-dependent manner, caused cell cycle arrest in G2/M phase, and induced cell apoptosis via Bcl-2/PARP-1. The mechanism of action of artematrolide A included two aspects: artematrolide A suppressed cell proliferation by activating ROS/ERK/mTOR signaling pathway and promoted glucose metabolism from aerobic glycolysis to mitochondrial respiration by activating pyruvate dehydrogenase complex (PDC) and oxoglutarate dehydrogenase complex (OGDC) via inhibiting the activity of alkaline phosphatases (ALP).ConclusionArtematrolide A exhibited a significant cytotoxic activity on cervical cancer cells, induced G2/M cell cycle arrest and apoptosis by activating ROS/ERK/mTOR signaling pathway and promoting metabolic shift from aerobic glycolysis to mitochondrial respiration, which suggested artematrolide A might be a potential agent for the treatment of cervical cancer.  相似文献   

6.
7.
8.
A novel series of pyrazole-oxindole conjugates were prepared and characterized as potential cytotoxic agents by FT-IR, NMR and HR-MS. The cytotoxic activity of these compounds was tested in the Jurkat acute T cell leukemia, CEM acute lymphoblastic leukemia, MCF10 A mammary epithelial and MDA-MB 231 triple negative breast cancer cell lines. Among the tested conjugates, 5-methyl-3-((3-(1-phenyl)-3-(p-tolyl)-1H-pyrazol-4-yl)methylene)indolin-2-one 6h emerged as the most cytotoxic with a CC50 of 4.36+/−0.2 μM against Jurkat cells. The mechanism of cell death induced by 6h was investigated through the Annexin V-FITC assay via flow cytometry. Reactive oxygen species (ROS) accumulation, mitochondrial health and the cell cycle progression were also evaluated in cells exposed to 6h . Results demonstrated that 6h induces apoptosis in a dose-response manner, without generating ROS and/or altering mitochondrial health. In addition, 6h disrupted the cell cycle distribution causing an increase in DNA fragmentation (Sub G0-G1), and an arrest in the G0-G1 phase. Taken together, the 6h compound revealed a strong potential as an antineoplastic agent evidenced by its cytotoxicity in leukemia cells, the activation of apoptosis and restriction of the cell cycle progression.  相似文献   

9.
10.
11.
Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated through the attenuated expression of several key proteins involved in cell cycle regulation, DNA topoisomerases IIα activity and epigenetic mechanisms followed by cell cycle arrest and apoptosis.  相似文献   

12.
A series of quinizarin derivatives containing quaternary ammonium salts and/or thiourea groups were synthesized and their anticancer activities against leukemia cell lines have been tested. Results showed that most of quinizarin derivatives could inhibit the proliferation of leukemia cells. Among these derivatives, compound 3 showed good inhibition activity against various leukemia cells with IC50 values ranging from 0.90?±?2.55?μM to 10.90?±?3.66?μM. At the same time, compound 3 also inhibited the growth of human embryonic kidney-293 cell (HEK-293). Molt-4 and Jurkat cells, acute T lymphoblastic leukemia (T-ALL) cell lines, were selected to reveal potential anticancer mechanism of compound 3. Compound 3 inhibited the proliferation of Molt-4 and Jurkat cells in a dose- and time-dependent manner and led to a marked G0/G1 phase arrest. Analysis of Annexin V-APC and intracellular reactive oxygen species (ROS) level by flow cytometry showed that compound 3 induced significant apoptosis in Molt-4 and Jurkat cells. Western blotting assay showed that compound 3 activated the caspase-dependent apoptosis pathway and induced the degradation of Bcl-2 and c-myc protein.  相似文献   

13.
BackgroundRecalcitrant cancers appear as a major obstacle to chemotherapy, prompting scientists to intensify the search for novel drugs to tackle the cell lines expressing multi-drug resistant (MDR) phenotypes.PurposeThe purpose of this study was to evaluate the antiproliferative potential of a ferrulic acid derivative, 8,8-bis-(dihydroconiferyl)-diferulate (DHCF2) on a panel of 18 cancer cell lines, including various sensitive and drug-resistant phenotypes, belonging to human and animals. The mode of induction of cell death by this compound was further studied.MethodsThe antiproliferative activity, autophagy, ferroptotic and necroptotic cell death were evaluated by the resazurin reduction assay (RRA). CCRF-CEM leukemia cells were used for all mechanistic studies. A caspase-Glo assay was applied to evaluate the activity of caspases. Cell cycle analysis (PI staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-1) and reactive oxygen species (ROS) (H2DCFH-DA) were assessed by flow cytometry.ResultsDHCF2 demonstrated impressive cytotoxic effects towards the 18 cancer cell lines tested, with IC50 values all below 6.5 µM. The obtained IC50 values were in the range of 1.17 µM (towards CCRF-CEM leukemia cells) to 6.34 µM (towards drug-resistant HCT116 p53−/− human colon adenocarcinoma cells) for DHCF2 and from 0.02 µM (against CCRF-CEM cells) to 122.96 µM (against multidrug-resistant CEM/ADR5000 leukemia cells) for the reference drug, doxorubicin. DHCF2 had IC50 values lower than those of doxorubicin, against CEM/ADR5000 cells and on some melanoma cell lines, such as MaMel-80a cells, Mel-2a cells, MV3 cells and SKMel-505 cells. DHCF2 induced autophagy as well as apoptosis in CCRF-CEM cells though caspases activation, MMP alteration and increase of ROS production.ConclusionThe studied diferulic acid, DHCF2, is a promising antiproliferative compound. It deserves further indepth investigations with the ultimate aim to develop a novel drug to fight cancer drug resistance.  相似文献   

14.
Plant compounds have been identified as new drug prototypes. In this line, this work aimed to isolate the indole alkaloid affinisine from Tabernaemontana catharinensis and test its antitumor activity. The alkaloid was isolated by silica gel open column chromatography from the ethanolic extract of the stem of T. catharinensis. Afterwards, this molecule was characterized by high-resolution mass spectrometry and nuclear magnetic resonance. In the next step, the cytotoxicity of the compound was tested against human melanoma cell lines (A375, WM1366 and SK-MEL-28) and a normal skin cell line (CCD-1059Sk) using a MTT (3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cells treated with affinisine were evaluated by flow cytometry to analyze apoptosis and the induction of cell cycle arrest, to evaluate the dead mechanism. The metabolite was isolated in a 0.2% yield relative to the extract. Cytotoxic activity of the molecule was observed at 48 h, resulting in considerable growth inhibition rates in melanoma cells, especially in WM1366, which had the lowest IC50 (32.86 ± 2.54 µg/mL). The apoptosis rate was lower in A375 (56.66 and 86.71% with 57 and 65 µg/mL, respectively). Moreover, affinisine was able to significantly induce cell cycle arrest in different phases in the A375 and WM1366 cell lines. However, in SK-MEL-28 cells, cycle arrest was not observed. In summary, this compound significantly decreased the viability of tumor cells in a dose- and time-dependent manner for all evaluated lineages, reduced cell viability by the apoptosis mechanism and presented prominent activities of cell cycle arrest. In this way, the use of antineoplastic agents is among the most widely used therapeutic measures for the control and treatment of cancer. Affinisine is a promising prototype in the search for new drugs to treat cancer.  相似文献   

15.
BackgroundGomisin A (G.A), a lignan compound extracted from the fruits of Schisandra chinensis, is known to exert anti-tumor effects on hepatocarcinoma and colorectal cancer cells. Suppression of proliferation and metastatic abilities of cancer cells are some effective cancer treatment methods.PurposeThe objective of this study is to investigate the effects of G.A on metastatic melanoma, and the mechanism by which it affects metastatic melanoma.Study designThe anti-proliferative and anti-metastatic effects of G.A were observed in in vitro and in vivo.MethodsWST assay and flow cytometry were conducted to investigate the effect of G.A on proliferation, cell cycle arrest, and apoptosis in metastatic melanoma cell lines. Migration and invasion abilities of G.A-treated melanoma cells were observed by wound healing and invasion assays.ResultsG.A (25–100 μM) decreased the viability of melanoma cells by inducing cell cycle arrest and apoptosis. These anti-proliferative effects of G.A were found to be mediated by AMPK, ERK, and JNK activation. G.A (5–20 μM) decreased the migration and invasion of melanoma cells by suppressing epithelial-mesenchymal transition (EMT). Consequently, G.A (2–50 mg/kg) inhibited lung metastasis by suppressing EMT and inducing cell cycle arrest and apoptosis in melanoma cells.ConclusionThese results conclude that G.A has the potential to reduce metastatic melanoma through its anti-proliferative and anti-metastatic effects.  相似文献   

16.
Effects of rice bran agglutinin (RBA) on human monoblastic leukemia U937 cells were examined in comparison with those of wheat germ agglutinin (WGA) and Viscum album agglutinin (VAA). These lectins inhibit cell growth, and several lines of evidence indicate that the growth inhibition is caused by the induction of apoptosis. We observed that RBA induces chromatin condensation, externalization of membrane phosphatidylserine, and DNA ladder formation, features of apoptosis. DNA ladder formation was inhibited by a general inhibitor against caspases, which are known to play essential roles in apoptosis. Flow cytometric analysis revealed that RBA and WGA cause G2/M phase cell cycle arrest with increased expression of Waf1/p21, while cell cycle arrest was not observed for VAA. These data indicate that RBA induces apoptosis associated with cell cycle arrest in U937 cells, and suggest that the induction mechanism for RBA is similar to that for WGA, but different from that for VAA.  相似文献   

17.
摘要 目的:探讨长链非编码RNA(LncRNA)MYU对胶质瘤细胞周期分布、细胞增殖、迁移、侵袭和凋亡的影响,并初步探讨其作用机制。方法:实时荧光定量PCR(RT-qPCR)检测人脑正常胶质细胞HEB和胶质瘤细胞(U-251MG、A172、SHG139)中LncRNA MYU的表达情况。选取SHG139细胞,分为正常对照(NC)组、si-con组、si-LncRNA MYU组进行转染实验,行RT-qPCR检测转染效果。分别采用流式细胞术、细胞计数试剂盒(CCK-8)、Transwell实验检测沉默LncRNA MYU对SHG139细胞周期分布和凋亡、细胞增殖、细胞迁移和侵袭的影响。蛋白免疫印迹(Western blot)法检测基质金属蛋白酶2(MMP-2)、MMP-9、裂解的半胱氨酸天冬氨酸蛋白酶3(Cleaved caspase-3)、Cleaved caspase-9以及磷脂酰肌醇-3-羟激酶/蛋白激酶B(PI3K/Akt)信号通路相关蛋白表达情况。结果:LncRNA MYU在胶质瘤细胞株中比人脑正常胶质细胞中的表达水平显著升高(P<0.05),因此选择表达量最高的SHG139细胞进行转染实验。沉默LncRNA MYU能够显著诱导SHG139细胞G0-G1期阻滞、抑制细胞增殖、迁移和侵袭并诱导细胞凋亡(P<0.05)。沉默LncRNA MYU可显著抑制MMP-2、MMP-9、p-PI3K和p-AKT表达并促进Cleaved caspase-3、Cleaved caspase-9表达(P<0.05)。结论:沉默LncRNA MYU可诱导胶质瘤细胞G0-G1期阻滞,抑制细胞增殖、迁移和侵袭,促进细胞凋亡,其机制可能与抑制PI3K/AKT信号通路有关。  相似文献   

18.
19.
20.
AimDesign and synthesis of novel nalidixic acid derivatives of potent anticancer and topoisomerase II inhibitory activities were our major aim.Materials & methodsAll the newly synthesized nalidixic acid derivatives were submitted to the National Cancer Institute (NCI), Bethesda, USA and were accepted for single dose screening. Further investigation via IC50 determination of the most potent compound 6a against K-562 and SR leukemia cell lines. Finally, the topoisomerase II inhibitory activity, the cell cycle analysis and molecular docking of 6a were performed in order to identify the possible mechanism of the anticancer activity.ResultsCompound 6a showed interesting selectivity against leukemia especially K-562 and SR subpanels with IC50 35.29 µM and 13.85 µM respectively. Moreover, compound 6a revealed potent topoisomerase IIα and topoisomerase IIβ inhibitory activity compared with known topoisomerase inhibitors such as doxorubicin and topotecan with IC50 1.30 µM and 0.017 µM respectively. Cell cycle analysis indicated that compound 6a induced cell cycle arrest at G2-M phase leading to inhibition of cell proliferation and apoptosis. Molecular modeling demonstrated that the potent topoisomerase inhibitory activity of 6a was due to the interaction with the topoisomerase II enzyme through coordinate bonding with the magnesium ion Mg2+, hydrogen bonding with Asp 545 and arene cation interaction with His 759.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号