首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Endocrine practice》2023,29(5):349-352
ObjectiveGraves disease (GD), an autoimmune disease of the thyroid, is likely caused by a combination of genetic predisposition and environmental triggers. Recent data suggest that COVID-19 may be associated with the development of autoimmune disease. The aim of this study was to assess the incidence and characteristics of new GD diagnoses in youth prior to and during the COVID-19 pandemic.MethodsWe performed a retrospective chart review of all new GD diagnoses in patients aged 0 to 18 years diagnosed at a tertiary care pediatric hospital between January 1, 2018, and December 31, 2021.ResultsOver a 4-year period, 51 patients had been diagnosed with new-onset GD. We observed an increased incidence in new-onset GD during the pandemic compared with that in the 2 prior years (P = .01). During the pandemic period, heart rates (P = .03) as well as systolic (P = .005) and diastolic (P = .01) blood pressures were higher at initial evaluation, patients more frequently reported palpitations (P = .03) and tremors (P = .04), and an increased proportion of patients required beta-blockade treatment at diagnosis (P = .002). The percentage of patients requiring thionamide treatment and thionamide doses had been similar over time.ConclusionWe identified an increase in new-onset pediatric GD diagnoses during the COVID-19 pandemic. In addition, youths had increased severity of symptoms and more frequently required beta-blockade treatment at diagnosis. Further study of the relationship between COVID-19 and autoimmune thyroid disease is needed.  相似文献   

3.
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which is an ongoing pandemic disease. SARS-CoV-2-specific CD4+ and CD8+ T-cell responses have been detected and characterized not only in COVID-19 patients and convalescents, but also unexposed individuals. Here, we review the phenotypes and functions of SARS-CoV-2-specific T cells in COVID-19 patients and the relationships between SARS-CoV-2-specific T-cell responses and COVID-19 severity. In addition, we describe the phenotypes and functions of SARS-CoV-2-specific memory T cells after recovery from COVID-19 and discuss the presence of SARS-CoV-2-reactive T cells in unexposed individuals and SARS-CoV-2-specific T-cell responses elicited by COVID-19 vaccines. A better understanding of T-cell responses is important for effective control of the current COVID-19 pandemic.  相似文献   

4.
Since the outset of the coronavirus disease 2019 (COVID-19) pandemic, the gut microbiome in COVID-19 has garnered substantial interest, given its significant roles in human health and pathophysiology. Accumulating evidence is unveiling that the gut microbiome is broadly altered in COVID-19, including the bacterial microbiome, mycobiome, and virome. Overall, the gut microbial ecological network is significantly weakened and becomes sparse in patients with COVID-19, together with a decrease in gut microbiome diversity. Beyond the existence of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the gut microbiome of patients with COVID-19 is also characterized by enrichment of opportunistic bacteria, fungi, and eukaryotic viruses, which are also associated with disease severity and presentation. Meanwhile, a multitude of symbiotic bacteria and bacteriophages are decreased in abundance in patients with COVID-19. Such gut microbiome features persist in a significant subset of patients with COVID-19 even after disease resolution, coinciding with ‘long COVID’ (also known as post-acute sequelae of COVID-19). The broadly-altered gut microbiome is largely a consequence of SARS-CoV-2 infection and its downstream detrimental effects on the systemic host immunity and the gut milieu. The impaired host immunity and distorted gut microbial ecology, particularly loss of low-abundance beneficial bacteria and blooms of opportunistic fungi including Candida, may hinder the reassembly of the gut microbiome post COVID-19. Future investigation is necessary to fully understand the role of the gut microbiome in host immunity against SARS-CoV-2 infection, as well as the long-term effect of COVID-19 on the gut microbiome in relation to the host health after the pandemic.  相似文献   

5.
《Endocrine practice》2020,26(8):915-922
Objective: In December 2019, a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an outbreak of coronavirus disease 2019 (COVID-19) that resulted in a global pandemic with substantial morbidity and mortality. Currently, there is no specific treatment or approved vaccine against COVID-19. The underlying associated comorbidity and diminished immune function of some pituitary patients (whether caused by the disease and its sequelae or treatment with excess glucocorticoids) increases their risk of contracting and developing complications from COVID-19 infection.Methods: A review of studies in PubMed and Google Scholar published between January 2020 to the time of writing (May 1, 2020) was conducted using the search terms ‘pituitary,’ ‘coronavirus,’ ‘COVID-19’, ‘2019-nCoV’, ‘diabetes mellitus’, ‘obesity’, ‘adrenal,’ and ‘endocrine.’Results: Older age and pre-existing obesity, hypertension, cardiovascular disease, and diabetes mellitus increase the risk of hospitalization and death in COVID-19 patients. Men tend to be more severely affected than women; fortunately, most men, particularly of younger age, survive the infection. In addition to general comorbidities that may apply to many pituitary patients, they are also susceptible due to the following pituitary disorder–specific features: hypercortisolemia and adrenal suppression with Cushing disease, adrenal insufficiency and diabetes insipidus with hypopituitarism, and sleep-apnea syndrome and chest wall deformity with acromegaly.Conclusion: This review aims to focus on the impact of COVID-19 in patients with pituitary disorders. As most countries are implementing mobility restrictions, we also discuss how this pandemic has affected patient attitudes and impacted our decision-making on management recommendations for these patients.Abbreviations: ACE = angiotensin-converting enzyme; AI = adrenal insufficiency; ARB = angiotensin receptor blocker; ARDS = acute respiratory disease syndrome; COVID-19 = coronavirus disease 2019; CPAP = continuous positive airway pressure; DI = diabetes insipidus; DM = diabetes mellitus; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2  相似文献   

6.
The recent appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people around the world and caused a global pandemic of coronavirus disease 2019 (COVID-19). It has been suggested that uncontrolled, exaggerated inflammation contributes to the adverse outcomes of COVID-19. In this review, we summarize our current understanding of the innate immune response elicited by SARS-CoV-2 infection and the hyperinflammation that contributes to disease severity and death. We also discuss the immunological determinants behind COVID-19 severity and propose a rationale for the underlying mechanisms.  相似文献   

7.
SARS-COV-2 infection represents the greatest pandemic of the world, counting daily increasing number of subjects positive to the virus and, sadly, increasing number of deaths. Current studies reported that the cytokine/chemokine network is crucial in the onset and maintenance of the “cytokine storm”, the event occurring in those patients in whom the progression of COVID-19 will progress, in most cases, to a very severe and potentially threatening disease. Detecting a possible “immune signature” in patients, as assessed by chemokines status in patients with COVID-19, could be helpful for individual risk stratification for developing a more or less severe clinical course of the disease. The present review is specifically aimed at overviewing current evidences provided by in vitro and in vivo studies addressing the issue of which chemokines seems to be involved, at least at present, in COVID-19. Currently available experimental and clinical studies regarding those chemokines more deeply studied in COVID-19, with a specific focus on their role in the cytokine storm and ultimately with their ability to predict the clinical course of the disease, will be taken into account. Moreover, similarities and differences between chemokines and cytokines, which both contribute to the onset of the pro-inflammatory loop characterizing SARS-COV-2 infection, will be briefly discussed. Future studies will rapidly accumulate in the next months and their results will hopefully provide more insights as to the complex physiopathology of COVID-19-related cytokine storm. This will likely make the present review somehow “dated” in a short time, but still the present review provides an overview of the scenario of the current knowledge on this topic.  相似文献   

8.
BackgroundHigh prevalence, severity, and formidable morbidity have marked the recent emergence of the novel coronavirus disease (COVID-19) pandemic. The significant association with the pre-existing co-morbid conditions has increased the disease burden of this global health emergency, pushing the patients, healthcare workers and facilities to the verge of complete disruption.MethodsMeta-analysis of pooled data was undertaken to assess the cumulative risk assessment of multiple co-morbid conditions associated with severe COVID-19. PubMed, Scopus, and Google Scholar were searched from January 1st to June 27th 2020 to generate a well-ordered, analytical, and critical review. The exercise began with keying in requisite keywords, followed by inclusion and exclusion criteria, data extraction, and quality evaluation. The final statistical meta-analysis of the risk factors of critical/severe and non-critical COVID-19 infection was carried out on Microsoft Excel (Ver. 2013), MedCalc (Ver.19.3), and RevMan software (Ver.5.3).ResultsWe investigated 19 eligible studies, comprising 12037 COVID-19 disease patients, representing the People’s Republic of China (PRC), USA, and Europe. 18.2% (n = 2200) of total patients had critical/severe COVID-19 disease. The pooled analysis showed a significant association of COVID-19 disease severity risk with cardiovascular disease (RR: 3.11, p < 0.001), followed by diabetes (RR: 2.06, p < 0.001), hypertension (RR: 1.54, p < 0.001), and smoking (RR: 1.52, p < 006).ConclusionThe review involved a sample size of 12037 COVID-19 patients across a wide geographical distribution. The reviewed reports have focussed on the association of individual risk assessment of co-morbid conditions with the heightened risk of COVID-19 disease. The present meta-analysis of cumulative risk assessment of co-morbidity from cardiovascular disease, diabetes, hypertension, and smoking signals a novel interpretation of inherent risk factors exacerbating COVID-19 disease severity. Consequently, there exists a definite window of opportunity for increasing survival of COVID-19 patients (with high risk and co-morbid conditions) by timely identification and implementation of appropriately suitable treatment modalities.  相似文献   

9.
《Cytotherapy》2022,24(3):235-248
The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic poses a never before seen challenge to human health and the economy. Considering its clinical impact, with no streamlined therapeutic strategies in sight, it is crucial to understand the infection process of SARS-CoV-2. Our limited knowledge of the mechanisms underlying SARS-CoV-2 infection impedes the development of alternative therapeutics to address the pandemic. This aspect can be addressed by modeling SARS-CoV-2 infection in the human context to facilitate drug screening and discovery. Human induced pluripotent stem cell (iPSC)-derived lung epithelial cells and organoids recapitulating the features and functionality of the alveolar cell types can serve as an in vitro human model and screening platform for SARS-CoV-2. Recent studies suggest an immune system asynchrony leading to compromised function and a decreased proportion of specific immune cell types in coronavirus disease 2019 (COVID-19) patients. Replenishing these specific immune cells may serve as useful treatment modality against SARS-CoV-2 infection. Here the authors review protocols for deriving lung epithelial cells, alveolar organoids and specific immune cell types, such as T lymphocytes and natural killer cells, from iPSCs with the aim to aid investigators in making relevant in vitro models of SARS-CoV-2 along with the possibility derive immune cell types to treat COVID-19.  相似文献   

10.
In March 2020, the World Health Organization (WHO) characterized the outbreak of the coronavirus disease 2019 (COVID-19) as a pandemic. The aim of this study was to evaluate the psychological impact of the COVID-19 pandemic on cancer patients undergoing radiotherapy.Were enrolled 210 patients in treatment and in follow-up who had access to the Radiation Oncology Department of the Campus Bio-Medico University Hospital Foundation between April and May 2020. The sample was subjected to structured interview and validated questionnaires. 37% of patients showed significant levels of distress; depressive symptoms were reported by 22.4% of patients and 99% of sample had clinically significant anxiety symptoms. All patients anxiety worsened during the COVID-19 pandemic (p=< 0.001). Patients on active treatment had higher levels of distress (3.5 vs 2.6; p = 0.04) and anxiety (3.5 vs 2.6; p = 0.04). Lung cancer patients appeared to be more afraid of COVID-19 than other patients (24.2 vs 22.2). This study highlights the presence of clinically significant anxiety in 99% of sample. This conclusion reflects the condition of emotional distress present during the pandemic which makes it necessary to treat patients in a multidisciplinary perspective that includes psychological support in the care plan.  相似文献   

11.
The coronavirus disease 2019 (COVID-19), which emerged in December 2019, continues to be a serious health concern worldwide. There is an urgent need to develop effective drugs and vaccines to control the spread of this disease. In the current study, the main phytochemical compounds of Nigella sativa were screened for their binding affinity for the active site of the RNA-dependent RNA polymerase (RdRp) enzyme of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The binding affinity was investigated using molecular docking methods, and the interaction of phytochemicals with the RdRp active site was analyzed and visualized using suitable software. Out of the nine phytochemicals of N. sativa screened in this study, a significant docking score was observed for four compounds, namely α-hederin, dithymoquinone, nigellicine, and nigellidine. Based on the findings of our study, we report that α-hederin, which was found to possess the lowest binding energy (–8.6 kcal/mol) and hence the best binding affinity, is the best inhibitor of RdRp of SARS-CoV-2, among all the compounds screened here. Our results prove that the top four potential phytochemical molecules of N. sativa, especially α-hederin, could be considered for ongoing drug development strategies against SARS-CoV-2. However, further in vitro and in vivo testing are required to confirm the findings of this study.  相似文献   

12.

In the late autumn of 2019, a new potentially lethal human coronavirus designated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. The pandemic spread of this zoonotic virus has created a global health emergency and an unprecedented socioeconomic crisis. The severity of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV?2, is highly variable. Most patients (~85%) develop no or mild symptoms, while others become seriously ill, some succumbing to disease-related complications. In this review, the SARS-CoV?2 life cycle, its transmission and the clinical and immunological features of COVID-19 are described. In addition, an overview is presented of the virological assays for detecting ongoing SARS-CoV?2 infections and the serological tests for SARS-CoV-2-specific antibody detection. Also discussed are the different approaches to developing a COVID-19 vaccine and the perspectives of treating COVID-19 with antiviral drugs, immunomodulatory agents and anticoagulants/antithrombotics. Finally, the cardiovascular manifestations of COVID-19 are briefly touched upon. While there is still much to learn about SARS-CoV?2, the tremendous recent advances in biomedical technology and knowledge and the huge amount of research into COVID-19 raise the hope that a remedy for this disease will soon be found. COVID-19 will nonetheless have a lasting impact on human society.

  相似文献   

13.
AimTo provide recommendations for the management of patients with cancer in the COVID-19 era.BackgroundThe current global pandemic of COVID-19 has severely impacted global healthcare systems. Several groups of people are considered high-risk for SARS-CoV-2 infection, including patients with cancer. Therefore, protocols for the better management of these patients during this viral pandemic are necessary. So far, several protocols have been presented regarding the management of patients with cancer during the COVID-19 pandemic. However, none of them points to a developing country with limited logistics and facilities.MethodsIn this review, we have provided a summary of recommendations on the management of patients with cancer during the COVID-19 pandemic based on our experience in Shohada-e Tajrish Hospital, Iran.ResultsWe recommend that patients with cancer should be managed in an individualized manner during the COVID-19 pandemic.ConclusionsOur recommendation provides a guide for oncology centers of developing countries for better management of cancer.  相似文献   

14.
《Endocrine practice》2022,28(10):1100-1106
ObjectiveSince January 2020, the highly contagious novel coronavirus SARS-CoV-2 has caused a global pandemic. Severe COVID-19 leads to a massive release of proinflammatory mediators, leading to diffuse damage to the lung parenchyma, and the development of acute respiratory distress syndrome. Treatment with the highly potent glucocorticoid (GC) dexamethasone was found to be effective in reducing mortality in severely affected patients.MethodsTo review the effects of glucocorticoids in the context of COVID-19 we performed a literature search in the PubMed database using the terms COVID-19 and glucocorticoid treatment. We identified 1429 article publications related to COVID-19 and glucocorticoid published from 1.1.2020 to the present including 238 review articles and 36 Randomized Controlled Trials. From these studies, we retrieved 13 Randomized Controlled Trials and 86 review articles that were relevant to our review topics. We focused on the recent literature dealing with glucocorticoid metabolism in critically ill patients and investigating the effects of glucocorticoid therapy on the immune system in COVID-19 patients with severe lung injury.ResultsIn our review, we have discussed the regulation of the hypothalamic-pituitary-adrenal axis in patients with critical illness, selection of a specific GC for critical illness-related GC insufficiency, and recent studies that investigated hypothalamic-pituitary-adrenal dysfunction in patients with COVID-19. We have also addressed the specific activation of the immune system with chronic endogenous glucocorticoid excess, as seen in patients with Cushing syndrome, and, finally, we have discussed immune activation due to coronavirus infection and the possible mechanisms leading to improved outcomes in patients with COVID-19 treated with GCs.ConclusionFor clinical endocrinologists prescribing GCs for their patients, a precise understanding of both the molecular- and cellular-level mechanisms of endogenous and exogenous GCs is imperative, including timing of administration, dosage, duration of treatment, and specific formulations of GCs.  相似文献   

15.
Chen  Guanghua  Huang  Guizhi  Lin  Han  Wu  Xinyou  Tan  Xiaoyan  Chen  Zhoutao 《Immunity & ageing : I & A》2021,18(1):1-10

The disease (COVID-19) novel coronavirus pandemic has so far infected millions resulting in the death of over a million people as of Oct 2020. More than 90% of those infected with COVID-19 show mild or no symptoms but the rest of the infected cases show severe symptoms resulting in significant mortality. Age has emerged as a major factor to predict the severity of the disease and mortality rates are significantly higher in elderly patients. Besides, patients with underlying conditions like Type 2 diabetes, cardiovascular diseases, hypertension, and cancer have an increased risk of severe disease and death due to COVID-19 infection. Obesity has emerged as a novel risk factor for hospitalization and death due to COVID-19. Several independent studies have observed that people with obesity are at a greater risk of severe disease and death due to COVID-19. Here we review the published data related to obesity and overweight to assess the possible risk and outcome in Covid-19 patients based on their body weight. Besides, we explore how the obese host provides a unique microenvironment for disease pathogenesis, resulting in increased severity of the disease and poor outcome.

  相似文献   

16.
《Endocrine practice》2021,27(2):101-109
ObjectivePrecise risk stratification and triage of coronavirus disease 2019 (COVID-19) patients are essential in the setting of an overwhelming pandemic burden. Clinical observation has shown a somewhat high prevalence of sick euthyroid syndrome among patients with COVID-19. This study aimed to evaluate the predictive value of free triiodothyronine (FT3) at the clinical presentation of COVID-19 for disease severity and death.MethodsThis retrospective cohort study was based on electronic medical records. The study was conducted at Sheba Medical Centre, a tertiary hospital where several acute and chronic wards have been dedicated to the treatment of patients with COVID-19. The primary outcome measure was death during hospitalization; secondary outcomes included hospitalization in intensive care, mechanical ventilation, and length of hospitalization.ResultsOf a total of 577 polymerase chain reaction-positive patients with COVID-19 hospitalized between February 27 and July 30, 2020, 90 had at least 1 measurement of thyroid-stimulating hormone, free thyroxine, and FT3 within 3 days of presentation. After applying strict exclusion criteria, 54 patients were included in the study. Patients in the lowest tertile of FT3 had significantly higher rates of mortality (40%, 5.9%, and 5.9%, P = .008), mechanical ventilation (45%, 29.4%, and 0.0%; P = .007) and intensive care unit admission (55%, 29.4%, and 5.9%, P = .006). In multivariate analyses adjusted for age, Charlson comorbidity index, creatinine, albumin, and white blood cell count. FT3 remained a significant independent predictor of death.ConclusionFT3 levels can serve as a prognostic tool for disease severity in the early presentation of COVID-19.  相似文献   

17.
《Endocrine practice》2022,28(11):1166-1177
ObjectiveOptimal glucocorticoid-induced hyperglycemia (GCIH) management is unclear. The COVID-19 pandemic has made this issue more prominent because dexamethasone became the standard of care in patients needing respiratory support. This systematic review aimed to describe the management of GCIH and summarize available management strategies for dexamethasone-associated hyperglycemia in patients with COVID-19.MethodsA systematic review was conducted using the PubMed/MEDLINE, Cochrane Library, Embase, and Web of Science databases with results from 2011 through January 2022. Keywords included synonyms for “steroid-induced diabetes” or “steroid-induced hyperglycemia.” Randomized controlled trials (RCTs) were included for review of GCIH management. All studies focusing on dexamethasone-associated hyperglycemia in COVID-19 were included regardless of study quality.ResultsInitial search for non-COVID GCIH identified 1230 references. After screening and review, 33 articles were included in the non-COVID section of this systematic review. Initial search for COVID-19–related management of dexamethasone-associated hyperglycemia in COVID-19 identified 63 references, whereas 7 of these were included in the COVID-19 section. RCTs of management strategies were scarce, did not use standard definitions for hyperglycemia, evaluated a variety of treatment strategies with varying primary end points, and were generally not found to be effective except for Neutral Protamine Hagedorn insulin added to basal-bolus regimens.ConclusionFew RCTs are available evaluating GCIH management. Further studies are needed to support the formulation of clinical guidelines for GCIH especially given the widespread use of dexamethasone during the COVID-19 pandemic.  相似文献   

18.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging respiratory virus responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic. More than a year into this pandemic, the COVID-19 fatigue is still escalating and takes hold of the entire world population. Driven by the ongoing geographical expansion and upcoming mutations, the COVID-19 pandemic has taken a new shape in the form of emerging SARS-CoV-2 variants. These mutations in the viral spike (S) protein enhance the virulence of SARS-CoV-2 variants by improving viral infectivity, transmissibility and immune evasion abilities. Such variants have resulted in cluster outbreaks and fresh infection waves in various parts of the world with increased disease severity and poor clinical outcomes. Hence, the variants of SARS-CoV-2 pose a threat to human health and public safety. This review enlists the most recent updates regarding the presently characterized variants of SARS-CoV-2 recognized by the global regulatory health authorities (WHO, CDC). Based on the slender literature on SARS-CoV-2 variants, we collate information on the biological implications of these mutations on virus pathology. We also shed light on the efficacy of therapeutics and COVID-19 vaccines against the emerging SARS-CoV-2 variants.  相似文献   

19.
《Endocrine practice》2020,26(10):1186-1195
Objective: To review data implicating microbiota influences on Coronavirus Disease 2019 (COVID-19) in patients with diabetes.Methods: Primary literature review included topics: “COVID-19,” “SARS,” “MERS,” “gut micro-biota,” “probiotics,” “immune system,” “ACE2,” and “metformin.”Results: Diabetes was prevalent (~11%) among COVID-19 patients and associated with increased mortality (about 3-fold) compared to patients without diabetes. COVID-19 could be associated with worsening diabetes control and new diabetes diagnosis that could be linked to high expression of angiotensin-converting enzyme 2 (ACE2) receptors (coronavirus point of entry into the host) in the endocrine pancreas. A pre-existing gut microbiota imbalance (dysbiosis) could contribute to COVID-19–related complications in patients with diabetes. The COVID-19 virus was found in fecal samples (~55%), persisted for about 5 weeks, and could be associated with diarrhea, suggesting a role for gut dysbiosis. ACE2 expressed on enterocytes and colonocytes could serve as an alternative route for acquiring COVID-19. Experimental models proposed some probiotics, including Lactobacillus casei, L. plantarum, and L. salivarius, as vectors for delivering or enhancing efficacy of anti-coronavirus vaccines. These Lactobacillus probiotics were also beneficial for diabetes. The potential mechanisms for interconnections between coronavirus, diabetes, and gut microbiota could be related to the immune system, ACE2 pathway, and metformin treatment. There were suggestions but no proof supporting probiotics benefits for COVID-19 infection.Conclusion: The data suggested that the host environment including the gut microbiota could play a role for COVID-19 in patients with diabetes. It is a challenge to the scientific community to investigate the beneficial potential of the gut microbiota for strengthening host defense against coronavirus in patients with diabetes.  相似文献   

20.
Background: The coronavirus disease 2019 (COVID-19) pandemic has deeply modified the complex logistical process underlying allogeneic hematopoietic stem cell transplant practices. Aim: In light of these changes, the authors compared data relative to allogeneic transplants carried out from 2018 at their center before (n = 167) and during the pandemic (n = 45). Methods: The authors examined patient characteristics, donor and graft types, cell doses and main transplant outcomes. Moreover, the authors evaluated the rise of costs attributable to additional COVID-19-related procedures as well as the risk of adverse events these procedures conveyed to grafts or recipients. Results: Overall, the number of transplants did not decrease during the pandemic, whereas patients at high relapse risk were prioritized. Transplants were mainly from matched unrelated donors, with a significant decrease in haploidentical related donors. Moreover, the use of bone marrow as a graft for haploidentical transplant was almost abandoned. Cryopreservation was introduced for all related and unrelated apheresis products, with a median storage time of 20 days. Notably, transplant outcomes (engraftment, acute graft-versus-host disease and non-relapse mortality) with cryopreserved products were comparable to those with fresh products. Conclusions: Considering that the emergency situation may persist for months, cryopreserving allogeneic grafts can offer a lifesaving opportunity for patients whose allogeneic transplant cannot be postponed until after the end of the COVID-19 pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号