首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background

Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines.

Methods

The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox.

Results and conclusion

RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group.

General significance

These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.  相似文献   

2.
BackgroundAlthough the breast cancer mortality has slowed down from 2008 to 2017, breast cancer incidence rate continues to rise and thus, new and/or improved treatments are highly needed. Among them, oncolytic virotherapy which has the ability of facilitating the antitumor adaptive immunity, appears as a promising anticancer therapy. Oncolytic measles virus (MV) is particularly suitable for targeting breast cancer due to the upregulation of MV's receptor nectin-4. Nonetheless, with limited clinical success currently, ways of boosting MV-induced breast cancer oncolysis are therefore necessary. Oncolytic virotherapy alone and combined with chemotherapeutic drugs are two strategic areas with intensive development for the search of anticancer drugs. Considering that baicalein (BAI) and cinnamaldehyde (CIN) have demonstrated antitumor properties against multiple cancers including breast cancer, they could be good partners for MV-based oncolytic virotherapy.PurposeTo assess the in vitro effect of BAI and CIN with MV and assess their combination effects.MethodsWe examined the combinatorial cytotoxic effect of oncolytic MV and BAI or CIN on MCF-7 breast cancer cells. Potential anti-MV activities of the phytochemicals were first investigated in vitro to determine the optimal combination model. Synergism of MV and BAI or CIN was then evaluated in vitro by calculating the combination indices. Finally, cell cycle analysis and apoptosis assays were performed to confirm the mechanism of synergism.ResultsOverall, the viral sensitization combination modality using oncolytic MV to first infect MCF-7 breast cancer cells followed by drug treatment with BAI or CIN was found to produce significantly enhanced tumor killing. Further mechanistic studies showed that the combinations ‘MV-BAI’ and ‘MV-CIN’ display synergistic anti-breast cancer effect, mediated by elevated apoptosis.ConclusionWe demonstrated, for the first time, effective combination of oncolytic MV with BAI or CIN that could be further explored and potentially developed into novel therapeutic strategies targeting nectin-4-marked breast cancer cells.  相似文献   

3.
《Phytomedicine》2015,22(9):820-828
BackgroundBreast cancer is the leading cause of cancer-related death among women worldwide. For treating breast cancer, numerous natural products have been considered as chemotherapeutic drugs.Hypothesis/purposeThe present study aims to investigate the apoptotic effect of Saxifragifolin A (Saxi A) isolated from Androsace umbellata in two different human breast cancer cells which are ER-positive MCF-7 cells and ER-negative MDA-MB-231 cells, and examine the molecular basis for its anticancer actions.Study designThe inhibitory effects of Saxi A on cell survival were examined in MCF-7 cells and MDA-MB-231 cells in vitro.MethodsMTT assays, Annexin V/PI staining analysis, ROS production assay, Hoechst33342 staining and Western blot analysis were performed.ResultsOur results showed that MDA-MB-231 cells were more sensitive to Saxi A-induced apoptosis than MCF-7 cells. Saxi A induced apoptosis in MDA-MB-231 cells through ROS-mediated and caspase-dependent pathways, whereas treatment with Saxi A induced apoptosis in MCF-7 cells in a caspase-independent manner. In spite of Saxi A-induced activation of MAPKs in both breast cancer cell lines, only p38 MAPK and JNK mediated Saxi A-induced apoptosis. In addition, cell survival of shERα-transfected MCF-7 cells was decreased, while MDA-MB-231 cells that overexpress ERα remained viable.ConclusionSaxi A inhibits cell survival in MCF-7 cells and MDA-MB-231 cells through different regulatory pathway, and ERα status appears to be important for regulating Saxi A-induced apoptosis in breast cancer cells. Thus, Saxi A may have a potential therapeutic use for treating breast cancer.  相似文献   

4.
We studied the effects, either combined or alone, of lectin from Korean mistletoe (Viscum album var. coloratum agglutinin, VCA) and doxorubicin (DOX) in MCF-7 (estrogen receptor-positive) and MDA-MB231 (estrogen receptor-negative) human breast cancer cells. When VCA and DOX were combined, a strong synergistic effect was shown in cell growth inhibition, compared to VCA or DOX treatment alone. In quantitative apoptosis studies analyzed by flow cytometry, a combination of two agents showed an increase in apoptosis in both cells, compared to agents alone. Also, pro-apoptotic proteins including Bax, Bik, and Puma were increased in both cells, and the survival factor Bcl-2 was inhibited in MCF-7 cells when drugs were combined. Furthermore, VCA combined with DOX mediated S phase arrest, accompanied with a decrease of cell number at G0/G1 phase. This suggests that VCA and DOX combination may possibly lead to a novel strategy for the treatment of breast cancer.  相似文献   

5.
Background: In breast cancers, calcium signaling is a main cause of proliferation and apoptosis of breast cancer cells. Although previous studies have implicated the transient receptor potential vanilloid 1 (TRPV1) cation channel, the synergistic inhibition effects of selenium (Se) and cisplatin in cancer and the suppression of ongoing apoptosis have not yet been investigated in MCF-7 breast cancer cells. This study investigates the anticancer properties of Se through TRPV1 channel activity in MCF-7 breast cancer cell line cultures when given alone or in combination with cisplatin. Materials: The MCF-7 cells were divided into four groups: the control group, the Se-treated group (200?nM), the cisplatin-treated group (40?μM) and the Se?+?cisplatin-treated group. Results: The intracellular free calcium ion concentration and current densities increased with TRPV1 channel activator capsaicin (0.01?mM), but they decreased with the TRPV1 blocker capsazepine (0.1?mM), Se, cisplatin, and Se?+?cisplatin incubations. However, mitochondrial membrane depolarization, apoptosis, and the caspase 3, and caspase 9 values increased in the Se-treated group and the cisplatin-treated group, although Western blot (procaspase 3 and 9) results and the cell viability levels decreased with the Se and Se?+?cisplatin treatments. Apoptosis and caspase-3 were further increased with the Se?+?cisplatin treatment. Intracellular reactive oxygen species production increased with the cisplatin treatment, but not with the Se treatment. Conclusion: This study’s results report, for the first time, that at a cellular level, Se and cisplatin interact on the same intracellular toxic cascade, and the combination of these two drugs can result in a remarkable anticancer effect through modulation of the TRPV1.  相似文献   

6.
BackgroundCyperenoic acid, one of the main chemical constituents of the root of Croton crassifolius, exhibited potent anti-angiogenic property on the zebrafish embryo model with little cytotoxicity. Nevertheless, its anti-angiogenic mechanism and anti-tumor effect have not been investigated.PurposeTo investigate the anti-angiogenic mechanisms of cyperenoic acid and evaluate it whether could exert anti-tumor effect by inhibiting angiogenesis.Study designTargeting vascular endothelial growth factor receptor-2 (VEGFR2) pathway to inhibit tumor angiogenesis is a significant strategy for cancer treatment. Initially, the anti-angiogenic effect of cyperenoic acid as well as the mechanisms of the action was studied using both in-vitro and in-vivo methodologies. Then, its anti-tumor effect through anti-angiogenesis by attenuating VEGFR2 signaling pathway was evaluated.MethodsThe in-vitro inhibitory effect of cyperenoic acid on the vascular endothelial growth factor (VEGF)-induced angiogenesis was evaluated using human umbilical vein endothelial cells (HUVECs) model. Moreover, its ex-vivo and in-vivo effects were evaluated using the aortic ring assay and the matrigel plug assay. The influence of the cyperenoic acid on tyrosine phosphorylation of VEGFR2 was studied by western blotting assay and the influence on downstream signaling pathway of VEGFR2 also be detected. Computer-docking simulations were carried out to study the interaction between cyperenoic acid and VEGFR2. Finally, its inhibitory effect on tumor growth was studied using breast cancer xenograft model.ResultsCyperenoic acid possessed little toxicity to HUVECs, but it significantly inhibited VEGF-induced proliferation, invasion, migration and tube formation of HUVECs. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Further mechanistic study showed that cyperenoic acid could suppress VEGFR2 tyrosine kinase activity and alter its downstream signaling pathways in VEGF-induced HUVECs. In addition, it could form two hydrogen bonds with the ATP binding pocket of the VEGFR2 kinase domain by docking. For breast cancer xenograft model, cyperenoic acid suppressed tumor growth, but no obvious toxic pathologic changes were observed in mice. Besides, it suppressed the phosphorylation of VEGFR2 in tumor, demonstrating its anti-angiogenic ability in vivo partly targeting the VEGFR2.ConlusionCyperenoic acid could exert anti-tumor effect in breast cancer by inhibiting angiogenesis via VEGFR2 signaling pathway.  相似文献   

7.
目的:观察甲基莲心碱对乳腺癌细胞系MCF-7增殖和凋亡的影响,并探讨其诱导乳腺癌细胞系MCF-7凋亡的可能作用机制。方法:采用体外培养人乳腺癌细胞系MCF-7,CCK-8实验检测不同浓度甲基莲心碱对MCF-7细胞增殖抑制作用;乳酸脱氢酶(LDH)试剂盒(微板法)检测细胞上清液LDH含量;流式细胞术分析甲基莲心碱对MCF-7细胞周期及凋亡的影响;实时定量PCR(RT-PCR)检测线粒体凋亡相关基因Bax和Bcl-2的表达水平。结果:CCK-8、LDH结果显示甲基莲心碱以时间、浓度依耐性的方式抑制乳腺癌MCF-7细胞的增殖及促进细胞毒性的增加;流式细胞术结果表明不同甲基莲心碱作用下MCF-7的平均凋亡率分别为(15.44±0.52)、(18.81±2.24)、(24.26±2.84)、(36.90±3.15)、(59.27±5.86),且使其周期阻滞于G0/G1期;RT-PCR检测结果证明甲基莲心碱可上调乳腺癌细胞中促凋亡基因Bax的表达,而下调抑制凋亡基因Bcl-2。结论:甲基莲心碱以时间和浓度依赖的方式抑制乳腺癌细胞增殖、细胞毒性增加,导致细胞周期于G0/G1阻滞并促进癌细胞凋亡。甲基莲心碱抗乳腺癌的可能作用机制是激活线粒体凋亡途径。  相似文献   

8.
The development of novel targeted therapies holds promise for conquering chemotherapy resistance, which is one of the major hurdles in current breast cancer treatment. Previous studies indicate that mitochondria uncoupling protein 2 (UCP-2) is involved in the development of chemotherapy resistance in colon cancer and lung cancer cells. In the present study we found that lower level of miR133a is accompanied by increased expression of UCP-2 in Doxorubicin-resistant breast cancer cell cline MCF-7/Dox as compared with its parental cell line MCF-7. We postulated that miR133a might play a functional role in the development of Doxorubicin-resistant in breast cancer cells. In this study we showed that: 1) exogenous expression of miR133a in MCF-7/Dox cells can sensitize their reaction to the treatment of Doxorubicin, which is coincided with reduced expression of UCP-2; 2) knockdown of UCP-2 in MCF-7/Dox cells can also sensitize their reaction to the treatment of Doxorubicin; 3) intratumoral delivering of miR133a can restore Doxorubicin treatment response in Doxorubicin-resistant xenografts in vivo, which is concomitant with the decreased expression of UCP-2. These findings provided direct evidences that the miR133a/UCP-2 axis might play an essential role in the development of Doxorubicin-resistance in breast cancer cells, suggesting that the miR133a/UCP-2 signaling cohort could be served as a novel therapeutic target for the treatment of chemotherapy resistant in breast cancer.  相似文献   

9.
Chemotherapy is the most effective strategy for the treatment of metastatic breast cancer. However, P-glycoprotein (P-gp)-mediated multidrug resistance severely limits the efficacy of chemotherapy and is a major cause of the failure during chemotherapeutic treatment. In this study, we investigated the anticancer effects of combining chemotherapeutic drugs with ascorbate (AA) in human breast cancer cells. We found that combined administration of AA can improve the sensitivity of both MCF-7 and doxorubicin (Dox)-resistant MCF-7/Adr cells to Dox in vitro and in vivo by a reactive oxygen species (ROS)-dependent mechanism. Further studies proved that AA can promote the accumulation of Dox in MCF-7/Adr cells when combined with doxorubicin. AA had no effect on the expression of P-gp at the mRNA and protein levels, but could decrease its activity as demonstrated by an obvious inhibition of efflux of P-gp substrate Rh 123. AA reduced ATP levels in both MCF-7 and MCF-7/Adr cells, and pretreating AA-stimulating cells with catalase completely rescued ATP levels. With ATP reduction, we observed an increased cellular calcium and the appearance of vacuoles and micropores on the cell surface, indicating the increased cell membrane permeability in AA-treated MCF-7/Adr cells. The above results suggest that AA could promote the cellular accumulation of doxorubicin by inducing ROS-dependent ATP depletion. Clinically, a combination of AA with doxorubicin would be a novel strategy for reversal of the multidrug resistance in human breast cancer cells during chemotherapy.  相似文献   

10.
BackgroundEphedra alata, a member of the Ephedraceae family, was used to treat different diseases and it might be shown a strong efficacy to inhibit cancer cell lines.MethodsDue to the limited research available about this plant, the objective of this research was to evaluate the antioxidant, cytotoxic and apoptotic effects of Ephedra alata ethanolic extract (EAEE), against different human cancer cell lines.ResultsEAEE inhibited the growth of the liver (HepG2), breast (MCF-7), and colon cancer cells (Caco-2). MCF-7 cells with an IC50 of 153 µg/ml, were the most sensitive to the extract. Furthermore, exploration using flow cytometry using Annexin V-FITC/PI assay demonstrated that EAEE caused death for all human cancer cells mainly through apoptosis. Very interestingly, qRT-PCR analysis using the ΔΔCt method revealed that four genes, Bax, p21, RB1, and TP53 were up-regulated in MCF-7 cells treated either with EAEE or S-FU drug. These findings let us believe that the mechanism by which EAEE kills breast cancer cells seems to be apoptosis via a P53-dependent manner, which involved intrinsic pathways through the induction of Bax, p21, and RB1.ConclusionsEAEE exhibits good biological properties in contradiction of HepG-2, MCF-7, and Caco-2 cell lines. This study appoints for the first time that EAEE increases the expression in MCF-7 cells of p53 and three more genetic traits that control cellular proliferation and apoptosis. Therefore, this plant could serve as a potential source to find new pro-apoptotic drugs for cancer treatment.  相似文献   

11.
BackgroundBreast cancer is a leading cause of death in women and with an increasing worldwide incidence. Doxorubicin, as a first-line anthracycline-based drug is conventional used on breast cancer clinical chemotherapy. However, the drug resistances limited the curative effect of the doxorubicin therapy in breast cancer patients, but the molecular mechanism determinants of breast cancer resistance to doxorubicin chemotherapy are not fully understood. In order to explore the association between metadherin (MTDH) and doxorubicin sensitivity, the differential expressions of MTDH in breast cancer cell lines and the sensitivity to doxorubicin of breast cancer cell lines were investigated.MethodsThe mRNA and protein expression of MTDH were determined by real-time PCR and Western blot in breast cancer cells such as MDA-MB-231, MCF-7, MDA-MB-435S, MCF-7/ADR cells. Once MTDH gene was knocked down by siRNA in MCF-7/ADR cells and overexpressed by MTDH plasmid transfection in MDA-MB-231 cells, the cell growth and therapeutic sensitivity of doxorubicin were evaluated using MTT and the Cell cycle assay and apoptosis rate was determined by flow cytometry.ResultsMCF-7/ADR cells revealed highly expressed MTDH and MDA-MB-231 cells had the lowest expression of MTDH. After MTDH gene was knocked down, the cell proliferation was inhibited, and the inhibitory rate of cell growth and apoptosis rate were enhanced, and the cell cycle arrest during the G0/G1 phase in the presence of doxorubicin treatment. On the other hand, the opposite results were observed in MDA-MB-231 cells with overexpressed MTDH gene.ConclusionMTDH gene plays a promoting role in the proliferation of breast cancer cells and its high expression may be associated with doxorubicin sensitivity of breast cancer.  相似文献   

12.
Abstract

In this study, novel thiosemicarbazides and 1,3,4-oxadiazoles were synthesized and evaluated for their anticancer effects on human MCF-7 breast cancer cell lines. Among the synthesized derivatives studied, compound 2-(3-(4-chlorophenyl)-3-hydroxybutanoyl)-N-phenylhydrazinecarbothioamide 4c showed the highest cytotoxicity against MCF-7 breast cancer cells as it reduced cell viability to approximately 15% compared to approximately 25% in normal breast epithelial cells. Therefore, we focused on 4c for further investigations. Our data showed that 4c induced apoptosis in MCF-7 cells which was further confirmed by TUNEL assay. Western blotting analysis showed that compound 4c up-regulated the pro-survival proteins Bax, Bad and ERK1/2, while it down-regulated anti-apoptotic proteins Bcl-2, Akt and STAT-3. Additionally, 4c induced phosphorylation of SAPK/JNK in MCF-7 cells. Pretreatment of MCF-7 cells with 10?µM of JNK inhibitor significantly reduced 4c-induced apoptosis. Molecular docking results suggested that compound 4c showed a binding pattern close to the pattern observed in the structure of the lead fragment bound to JNK1. Collectively, the data of current study suggested that the thiosemicarbazide 4c might trigger apoptosis in human MCF-7 cells by targeting JNK signaling.  相似文献   

13.
BackgroundBreast cancer is the first leading cause of women cancer-related deaths worldwide. While there are many proposed treatments for breast cancer, low efficacy, toxicity, and resistance are still major therapeutic obstacles. Thus, there is a need for safer and more effective therapeutic approaches. Because of the direct link between obesity and carcinogenesis, energy restriction mimetic agents (ERMAs) such as the antidiabetic agent, metformin was proposed as a novel antiproliferative agent. However, the anticancer dose of metformin alone is relatively high and impractical to be implemented safely in patients. The current work aimed to sensitize resistant breast cancer cells to metformin's antiproliferative effect using the natural potential anticancer agent, tangeretin.MethodsThe possible synergistic combination between metformin and tangeretin was initially evaluated using MTT cell viability assay in different breast cancer cell lines (MCF-7, MDA-MB-231, and their resistant phenotype). The possible mechanisms of synergy were investigated via Western blotting analysis, reactive oxygen species (ROS) measurement, annexin/PI assay, cell cycle analysis, and wound healing assay.ResultsThe results indicated the ability of tangeretin to improve the anticancer activity of metformin. Interestingly, the improved activity was almost equally observed in both parental and resistant cancer cells, which underlines the importance of this combination in cases of the emergence of resistance. The synergy was mediated through the enhanced activation of AMPK and ROS generation in addition to the improved inhibition of cell migration, induction of cell cycle arrest, and apoptosis in cancer cells.ConclusionThe current work underscores the importance of metformin as an ERMA in tackling breast cancer and as a novel approach to boost its anticancer activity via a synergistic combination with tangeretin.  相似文献   

14.
Thioredoxin system plays an important role in regulation of intracellular redox balance and various signaling pathways. Thioredoxin reductase (TrxR) is overexpressed in many cancer cells and has been identified as a potential target of anticancer drugs. Auranofin (AF) is potent TrxR inhibitor with novel in vitro and in vivo anticancer activities. Selenocystine (SeC) is a nutritionally available selenoamino acid with selective anticancer effects through induction of apoptosis. In the present study, we demonstrated the synergistic effects and the underlying molecular mechanisms of SeC in combination with AF on MCF-7 human breast cancer cells. The results showed that SeC and AF synergistically inhibited the cancer cell growth through induction of ROS-dependent apoptosis with the involvement of mitochondrial dysfunction. DNA damage-mediated p53 phosphorylation and down-regulation of phosphorylated AKT and ERK also contributed to cell apoptosis. Moreover, we demonstrated the important role of TrxR activity in the synergistic action of SeC and AF. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR.  相似文献   

15.
BackgroundOne of the world's leading causes of death among females is breast cancer. Oncolytic viruses are promising anticancer therapy that can overcome resistance to current conventional therapies. Measles virus replicates in and destroys malignant cells without affecting healthy cells. The study aimed to evaluate the lives attenuated Measles virus vaccine against Iraqi patient derived breast cancer cells that have functional BRCA1/BRCA2 genes and compare its activity against international breast cancer MCF-7 and CAL-51 cell lines.MethodsThe virus was propagated in VERO-hSLAM slam cells. The MTT cytotoxicity assay used to test the virus's ability to kill three human breast cell lines (AMJ13), (MCF-7), and (CAL-51). The cytopathic effect of the measles virus was determined using an H&E stain. Immunocytochemistry assay using specific anti H protein monoclonal antibody for measles virus in the virally infected cells. Finally, apoptosis induction in the infected cells tested using double staining of acridine orange/propidium iodide.ResultsThe result shown that breast cancer cells are effectively infected and destroyed by live attenuated measles virus vaccine, and it caused a significant cytopathic effect in the infected cell lines after 48–72 h of infection with remarkable effect on AMJ13 cells (IC50 was 3.527 for AMJ13, when it was 5.079 and 9.171 for MCF-7 and CAL-51 respectively). Measles virus treatment induces apoptosis significantly in breast cancer cell lines compared with control cells.ConclusionMeV vaccine is useful and safe as anticancer therapy with a notable impact on the local Iraqi breast cancer AMJ13 cells.  相似文献   

16.
The emergence of multidrug resistance (MDR) is a significant challenge in breast carcinoma chemotherapy. Kokusaginine isolated from Dictamnus dasycarpus Turcz. has been reported to show cytotoxicity in several human cancer cell lines including breast cancer cells MCF-7. In this study, kokusaginine showed the potent inhibitory effect on MCF-7 multidrug resistant subline MCF-7/ADR and MDA-MB-231 multidrug resistant subline MDA-MB-231/ADR. Kokusaginine markedly induced apoptosis in a concentration-dependent manner in MCF-7/ADR cells. Furthermore, kokusaginine reduced P-gp mRNA and protein levels, and suppressed P-gp function especially in MCF-7/ADR cells. In addition, kokusaginine showed to inhibit tubulin assembly and the binding of colchicine to tubulin by binding directly to tubulin and affects tubulin formation in vitro. Taken together, these results support the potential therapeutic value of kokusaginine as an anti-MDR agent in chemotherapy for breast carcinoma.  相似文献   

17.
Low-dose metronomic (LDM) paclitaxel therapy displayed a stronger anti-angiogenic activity on breast tumors with fewer side effects. Upregulation of anti-angiogenic factor Thrombospondin-1 (TSP-1) accords for therapeutic potency of LDM paclitaxel, but its molecular mechanism has not been elucidated yet. microRNAs (miRNAs) have emerged as new important regulators of tumor growth and metastasis. Here, we hypothesize that miRNAs are involved in TSP-1 overexpression in paclitaxel LDM therapy of breast tumors. The miRNA profile of tumor tissues from control, LDM and MTD groups in 4T1 mouse breast cancer model was detected by microarray, and then verified by quantitative real-time PCR (qRT-PCR). Luciferase assay and western blot were employed to explore the mechanisms of miRNAs involved in this process. We found that let-7f, let-7a, miR-19b and miR-340-5p were reduced by >2 fold, and miR-543* and miR-684 were upregulated by at least 50% in paclitaxel LDM therapy. qRT-PCR verification revealed that let-7f level was reduced most significantly in LDM therapy. Computational prediction using TargetScan and miRanda suggested THBS1 which encodes TSP-1 as a potential target for let-7f. Luciferase activity assay further confirmed that let-7f may bind to 3''UTR of THBS1 gene and inhibit its activity. Moreover, forced expression of let-7f led to a decrease of TSP-1 at both mRNA and protein levels in MCF-7 cells. Contrastly, let-7f inhibition induced an increased expression of THBS1 mRNA and TSP-1 protein, but did not affect the proliferation and apoptosis of MCF-7 cells. Paclitaxel LDM therapy led to a decrease of let-7f and the elevation of TSP-1 protein expression in MCF-7 cells, while overexpression of let-7f may abolish LDM-induced the upregulation of TSP-1 in MCF-7 cells. In summary, let-7f inhibition contributed to the upregulation of TSP-1 in paclitaxel LDM therapy, independently of proliferation, cell cycle arrest and apoptosis of breast cancer. This study indicates let-7f as a potential therapeutic target for breast tumor.  相似文献   

18.
目的:探讨积雪草甙对乳腺癌MCF-7细胞凋亡及VEGF、bFGF蛋白表达水平的影响。方法:选取人乳腺癌细胞MCF-7细胞系进行体外培养后,根据是否进行积雪草甙干预而分为两组,应用积雪草苷进行干预后,HE染色后用光学显微镜法观察细胞形态学变化,干预后的24h、48h以及72h时,应用TUNEL技术对对细胞凋亡情况进行检测,同时应用免疫荧光法检测血管内皮生长因子(VEGF)和碱性成纤维细胞生长因子(bFGF)的表达。结果:(1)与对照组相比较,积雪草甙干预的乳腺癌MCF-7细胞出现空泡、胞质外溢以及胞核皱缩等细胞凋亡现象,大量癌MCF-7细胞发生破碎死亡;(2)TUNEL技术法检测结果证实积雪草甙能够提高人乳腺癌MCF-7细胞凋亡率,与对照组比较差异具有统计学意义(P0.05),且呈时间依赖性;(3)积雪草甙干预的MCF-7细胞VEGF阳性表达和bFGF阳性表达显著低于对照组,差异具有统计学意义(P0.05),积雪草甙的抑制作用且呈时间依赖性。结论:积雪草甙不仅能够促进乳腺癌MCF-7细胞凋亡,而且能够降低VEGF和bFGF表达。  相似文献   

19.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

20.
Pueraria lobata root (PLR), well known as Kudzu root, has recently become commercially available in Western dietary supplements for menopausal symptoms. The scientific basis for its action has been attributed to the action of phytoestrogens. This study aimed to investigate the estrogen-like activity of isoflavonoids isolated from P. lobata root and their safety with respect to their effect on breast cancer cell proliferation. In an E-screen assay, crude MeOH extract of PLR significantly increased the proliferation of MCF-7 cells in a concentration-dependent manner. Among the four fractions obtained by solvent fractionation of MeOH extract, the n-BuOH fraction had significant estrogen-like activities at all concentrations tested. Phytochemical analysis of the n-BuOH fraction led to the isolation of 10 isoflavones (110), among which genistein (10) had significant estrogen-like activities at all concentrations tested. These activities were significantly enhanced by treatment with genistein and 17β-estradiol compared with 17β-estradiol alone, and this effect was mediated by decreased expression of estrogen receptor (ER)α and phospho-ERα in MCF-7 cells. In a cell cytotoxicity assay, genistein (10) exhibited significant cytotoxicity in both ER-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. This cytotoxicity was characterized by the induction of apoptotic cells stained with annexin V conjugated with Alexa Fluor 488 and involved activation of mitochondria-independent and -dependent apoptosis pathways in MCF-7 cells. Our results demonstrated that genistein (10) has estrogen-like effects dependent on ER pathway activation and anti-proliferative effects mediated by the apoptosis pathway rather than the ER pathway in MCF-7 breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号