首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundPolygoni Orientalis Fructus (POF) refers to the dried ripe fruit of Polygonum orientale L. which has a long historical application in clinic for treatment of various conditions in China. However, its chemical constituents, pharmacological effects and their coupled correlation have not been intensively investigated.PurposeIn present work, we aimed to elucidate the medicinal material basis, optimum indication and corresponding therapeutic mechanism of POF.MethodsThe main phytochemical ingredients in POF were characterized by liquid chromatography-mass spectrometry (LC-MS) analysis. The optimum medicinal potential and corresponding molecular mechanism of POF were deduced based on integrated statistic pattern recognition and network pharmacology. The deduced pharmacologic efficacy and mechanism of POF were further validated through in vitro study in free-fatty acid (FFA)-induced LO2 cells.ResultsTotal 30 main phytochemical ingredients were identified in POF in which 18 ingredients were screened to yield 277 potential targets. Based on analyzing the quantitative data matrix of drug-disease targets by statistic pattern recognition, non-alcoholic fatty liver disease (NAFLD) was screened as the optimum indication of POF from 23 candidate diseases. Promising action targets (PPARG, IL6, TNF, IL1B, IKBKB, RELA, etc.) and signaling pathways (AMPK signaling pathway, NF-κB signaling pathway, etc.) were screened and refined to elucidate the therapeutic mechanism of POF against NAFLD based on network pharmacology. In vitro study demonstrated that POF effectively alleviated FFA-induced steatosis, oxidative stress, mitochondrial dysfunction and inflammation, and these beneficial effects were attributed to the activation of AMPK signaling pathway and suppression of NF-κB signaling pathway.ConclusionPOF could be exploited as a promising phytotherapy in the treatment of NAFLD.  相似文献   

2.
BackgroundThe traditional Chinese Medicine (TCM) herbal formula Lian Hua Qing Wen (LHQW) improves the results of COVID-19 treatment. Three very recent studies analyzed with network pharmacology some working mechanisms of LHQW. However, we used more techniques and also included Angiotensin converting enzyme 2 (ACE2) (a SARS-CoV receptor, possibly the viral entry point in alveolar lung cells) and the immune system, as cytokine storm is essential in the late phase.PurposeExtensive detailed Network Pharmacology analysis of the LHQW- treatment mechanism in COVID-19.MethodsTCM-herb-meridian and protein interaction network (PIN) of LHQW, based on LHQW herbs meridian information and the protein-protein interaction (PPI) information of the LHQW-component targets. Hub and topological property analyses to obtain crucial targets and construct the crucial LHQW-PIN. Functional modules determination using MCODE, GO and KEGG pathway analysis of biological processes and pathway enrichment. Intersection calculations between the LHQW-proteins and ACE2 co-expression-proteins.ResultsLHQW herbs have relationships to Stomach-, Heart-, Liver- and Spleen-systems, but most (10 of the 13 herbs) to the Lung system, indicating specific effects in lung diseases. The crucial LHQW PIN has the scale-free property, contains 2,480 targets, 160,266 PPIs and thirty functional modules. Six modules are enriched in leukocyte-mediated immunity, the interferon-gamma-mediated signaling pathway, immune response regulating signaling pathway, interleukin 23 mediated signaling pathway and Fc gamma receptor-mediated phagocytosis (GO analysis). These 6 are also enriched in cancer, immune system-, and viral infection diseases (KEGG). LHQW shared 189 proteins with ACE2 co-expression proteins.ConclusionsDetailed network analysis shows, that LHQW herbal TCM treatment modulates the inflammatory process, exerts antiviral effects and repairs lung injury. Moreover, it also relieves the “cytokine storm” and improves ACE2-expression-disorder-caused symptoms. These innovative findings give a rational pharmacological basis and support for treating COVID-19 and possibly other diseases with LHQW.  相似文献   

3.
BackgroundChaiqin chengqi decoction (CQCQD) is a Chinese herbal formula derived from dachengqi decoction. CQCQD has been used for the management of acute pancreatitis (AP) in the West China Hospital for more than 30 years. Although CQCQD has a well-established clinical efficacy, little is known about its bioactive ingredients, how they interact with different therapeutic targets and the pathways to produce anti-inflammatory effects.PurposeToll-like receptor 4 (TLR4) and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated pro-inflammatory signaling pathways, play a central role in AP in determining the extent of pancreatic injury and systemic inflammation. In this study, we screened the bioactive ingredients using a pharmacological sub-network analysis based on the TLR4/NLRP3 signaling pathways followed by experimental validation.MethodsThe main CQCQD bioactive compounds were identified by UPLC-QTOF/MS. The TLR4/NLRP3 targets in AP for CQCQD active ingredients were confirmed through a pharmacological sub-network analysis. Mice received 7 intraperitoneal injections of cerulein (50 μg/kg; hourly) to induce AP (CER-AP), while oral gavage of CQCQD (5, 10, 15 and 20 g/kg; 3 doses, 2 hourly) was commenced at the 3rd injection of cerulein. Histopathology and biochemical indices were used for assessing AP severity, while polymerase chain reaction, Western blot and immunohistochemistry analyses were used to study the mechanisms. Identified active CQCQD compounds were further validated in freshly isolated mouse pancreatic acinar cells and cultured RAW264.7 macrophages.ResultsThe main compounds from CQCQD belonged to flavonoids, iridoids, phenols, lignans, anthraquinones and corresponding glycosides. The sub-network analysis revealed that emodin, rhein, baicalin and chrysin were the compounds most relevant for directly regulating the TLR4/NLRP3-related proteins TLR4, RelA, NF-κB and TNF-α. In vivo, CQCQD attenuated the pancreatic injury and systemic inflammation of CER-AP and was associated with reduced expression of TLR4/NLRP3-related mRNAs and proteins. Emodin, rhein, baicalin and chrysin significantly diminished pancreatic acinar cell necrosis with varied effects on suppressing the expression of TLR4/NLRP3-related mRNAs. Emodin, rhein and chrysin also decreased nitric oxide production in macrophages and their combination had synergistic effects on alleviating cell death as well as expression of TLR4/NLRP3-related proteins.ConclusionsCQCQD attenuated the severity of AP at least in part by inhibiting the TLR4/NLRP3 pro-inflammatory pathways. Its active ingredients, emodin, baicalin, rhein and chrysin contributed to these beneficial effects.  相似文献   

4.
Although the herbal pair of Euphorbia kansui (GS) and Glycyrrhiza (GC) is one of the so-called "eighteen antagonistic medicaments" in Chinese medicinal literature, it is prescribed in a classic Traditional Chinese Medicine (TCM) formula Gansui-Banxia-Tang for cancerous ascites, suggesting that GS and GC may exhibit synergistic or antagonistic effects in different combination designs. Here, we modeled the effects of GS/GC combination with a target interaction network and clarified the associations between the network topologies involving the drug targets and the drug combination effects. Moreover, the "edge-betweenness" values, which is defined as the frequency with which edges are placed on the shortest paths between all pairs of modules in network, were calculated, and the ADRB1-PIK3CG interaction exhibited the greatest edge-betweenness value, suggesting its crucial role in connecting the other edges in the network. Because ADRB1 and PIK3CG were putative targets of GS and GC, respectively, and both had functional interactions with AVPR2 approved as known therapeutic target for ascites, we proposed that the ADRB1-PIK3CG-AVPR2 signal axis might be involved in the effects of the GS-GC combination on ascites. This proposal was further experimentally validated in a H22 hepatocellular carcinoma (HCC) ascites model. Collectively, this systems-level investigation integrated drug target prediction and network analysis to reveal the combination principles of the herbal pair of GS and GC. Experimental validation in an in vivo system provided convincing evidence that different combination designs of GS and GC might result in synergistic or antagonistic effects on HCC ascites that might be partially related to their regulation of the ADRB1-PIK3CG-AVPR2 signal axis.  相似文献   

5.
摘要 目的:基于网络药理学探讨皂角刺治疗乳痈的作用机制。方法:通过建立皂角刺药物靶点数据集、乳痈相关疾病靶点数据集,构建皂角刺治疗急性乳腺炎的蛋白互作(PPI)网络,构建并分析"皂角刺活性成分-潜在靶点-急性乳腺炎"网络。开展基因本体(GO)功能富集分析和京都基因与基因组百科全书(KEGG)通路富集分析,探讨皂角刺治疗乳痈的可能机制。结果:共得到皂角刺活性成分11个,筛选出活性成分所对应的不重复靶点共97个,其中1个活性成分无对应靶点。通过搜集GeneCards 和OMIM数据库,共得到292个急性乳腺炎的相关靶点基因。将疾病靶点基因与药物活性成分所对应的靶点进行比对后,得到10个交集靶点,即皂角刺治疗急性乳腺炎的潜在靶点。皂角刺活性成分按degree值排前3名的依次为槲皮素(quercetin)、漆黄素(fisetin)、山奈酚(kaempferol),其中皂角刺治疗乳痈的靶点包括白细胞介素-6(IL-6)、表皮生长因子受体(EGFR)、酪氨酸激酶受体2(ERBB2)、细胞间黏附分子-1(ICAM1)、雌激素受体1(ESR1)等5个关键靶点,主要涉及乳腺癌疾病通路、TNF信号通路和雌激素信号通路等3条信号通路。结论:皂角刺治疗乳痈的作用机制可能与机体的炎症反应以及雌激素水平变化等密切相关。  相似文献   

6.
《Genomics》2020,112(3):2302-2308
BackgroundIschemic stroke (IS) was a significant public health concern and long-chain noncoding RNAs (lncRNAs) were gaining particular importance in stroke biology, however, the potential mechanism of lncRNAs in IS was not fully understood.MethodsIn this study, three diagnosed patients with IS and three controls were selected to establish the lncRNA library. Weighted gene co-expression network analysis (WGCNA) was applied to screen key lncRNA modules associated with IS. The key lncRNAs were identified by module membership (MM) and gene significance (GS). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to identify the key pathways and protein-protein interaction (PPI) network method was used to identify the key genes.ResultsA total of 3627 lncRNAs were investigated, followed by an analysis of 17 modules, and only one module was highly associated with the IS. The top 10 lncRNAs were identified based on GS and MM. KEGG pathways analysis revealed the top two pathways of the Human T cell Lymphotropic Virus-1 (HTLV-1) infection and the mTOR signaling pathway might influence the progress of IS. Further, genes meeting the top two degree (AKT1 and MAPK14) were selected as the hub genes in the PPI network.ConclusionTo summarize, this study identified the key pathways and genes, which might serve as biomarkers and targets for precise diagnosis and treatment of IS in the future.  相似文献   

7.
BackgroundStaphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures.AimThis review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes).MethodsElectronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized.ResultsPentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics.ConclusionThe inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.  相似文献   

8.
MAP kinase (MAPK) signal transduction cascades are conserved eukaryotic pathways that modulate stress responses and developmental processes. In a recent report we have identified novel Arabidopsis MAPKK/MAPK/Substrate signaling pathways using microarrays containing 2,158 unique Arabidopsis proteins. Subsequently, several WRKY and TGA targets phosphorylated by MAPKs were verified in planta. We have also reported that specific MAPKK/MAPK modules expressed in Nicotiana benthamiana induced a cell death phenotype related to the immune response. We have generated a MAPK phosphorylation network based on our protein microarray experimental data. Here we further analyze our network by integrating phosphorylation and gene expression information to identify biologically relevant signaling modules. We have identified 108 phosphorylation events that occur among 96 annotated genes with highly similar pairwise expression profiles. Our analysis brings a new perspective on MAPK signaling by revealing new relationships between components of signaling pathways.Key words: MAPK, protein microarray, network, cell death, co-expression, signaling  相似文献   

9.
Li C  Li Y  Xu J  Lv J  Ma Y  Shao T  Gong B  Tan R  Xiao Y  Li X 《Gene》2011,489(2):119-129
Detection of the synergetic effects between variants, such as single-nucleotide polymorphisms (SNPs), is crucial for understanding the genetic characters of complex diseases. Here, we proposed a two-step approach to detect differentially inherited SNP modules (synergetic SNP units) from a SNP network. First, SNP-SNP interactions are identified based on prior biological knowledge, such as their adjacency on the chromosome or degree of relatedness between the functional relationships of their genes. These interactions form SNP networks. Second, disease-risk SNP modules (or sub-networks) are prioritised by their differentially inherited properties in IBD (Identity by Descent) profiles of affected and unaffected sibpairs. The search process is driven by the disease information and follows the structure of a SNP network. Simulation studies have indicated that this approach achieves high accuracy and a low false-positive rate in the identification of known disease-susceptible SNPs. Applying this method to an alcoholism dataset, we found that flexible patterns of susceptible SNP combinations do play a role in complex diseases, and some known genes were detected through these risk SNP modules. One example is GRM7, a known alcoholism gene successfully detected by a SNP module comprised of two SNPs, but neither of the two SNPs was significantly associated with the disease in single-locus analysis. These identified genes are also enriched in some pathways associated with alcoholism, including the calcium signalling pathway, axon guidance and neuroactive ligand-receptor interaction. The integration of network biology and genetic analysis provides putative functional bridges between genetic variants and candidate genes or pathways, thereby providing new insight into the aetiology of complex diseases.  相似文献   

10.
《Phytomedicine》2015,22(11):981-992
BackgroundGenerally accepted, but insufficiently proved, the concept of synergy is based on an assumption that combining of two biologically active substances is justified because the combination is more active and less harmful than the ingredients.HypothesisAnalysis of RNA microarray of isolated neuroglia cells and the comparison the number of genes deregulated by plant extracts and their fixed herbal formulation might be a useful tool/method for assessment of synergistic and antagonistic interactions of herbal extracts in human organism.AimThe primary aim of this study was to extend a new method of assessment of synergistic and antagonistic interactions of herbal extracts in isolated human neuroglia cells when they applied in the form of fixed combinations. The secondary aim of the study was to predict possible effects of Herba Andrographidis (APE), Radix Eleutherococci (ESE) genuine extracts and their fixed combination Kan Jang (KJ) on cellular and physiological functions and associated diseases. The third task of the study was to find evidences that justify the hypothesis that these plants extracts in combination are more useful than the monodrugs.MethodsGene expression profiling was performed on the human neuroglia cell line T98G after treatment with APE, ESE, KJ and total number of more than two fold-deregulated genes from all experiments were compared by Venn diagram. Interactive pathways downstream analysis was performed with data sets of significantly up– or down-regulated genes and predicted effects on cellular functions and diseases were identified by Ingenuity IPA database software.ResultsESE and APE significantly deregulate 207 and 211 genes correspondingly; 36 deregulated genes were common for both extracts. In total of 382 deregulated genes was expected to be deregulated by their fixed combination KJ. However, it was found only 250 genes deregulated by KJ. Among these 250 genes, 111 genes were unique for the KJ combination and not affected by ESE and APE. This is presumably due to synergistic interactions of molecular networks affected by ESE and APE. Meanwhile, 170 genes deregulated by ESE, and 55 genes deregulated by APE when tested alone, were not up- or downregulated by KJ. That is the result of antagonistic integrations of ESE and APE extracts when applied in the combination. Fold change of expression of 18 common genes deregulated by APE, ESE and KJ was not additive when APE and ESE are combined in KJ herbal formula. However, a qualitative difference is observed in the fingerprint of deregulated genes of daughter substance (KJ) compared to fingerprints/signatures of deregulated genes of parent substances (APE and ESE).Specific for KJ and predictable (z-score > 2) were the effects on pathways and networks associated with infectious and chronic inflammatory disorders, namely encephalitis or neurological movement disorders. Noteworthy, Eleutherococcus alone has no effect on those networks, particularly on encephalitis network, while KJ deregulates 11 genes which have predictable inhibitory effect on infection, while APE regulates only 5 genes which are activated in encephalitis. It can be speculated that APE in combination with ESE may have better therapeutic effect, since more targets are affected. Similar suggestion is justified regarding neurological movement, which is associated with chronic inflammation, like arthritis and osteoarthrosis. Though, microarray analysis did not provide final proof that the genes induced by the KJ, APE and ESE are responsible for the physiological effects observed in humans following their oral administration. It provided insights into putative genes and directions for future research and possible implementation into practice.The most significantly affected canonical pathways deregulated by KJ and APE was interferon signaling pathway, indicating the possible effectiveness of KJ and APE in the treatment of severe sepsis, systemic lupus erythematosus and other autoimmune diseasesConclusionAnalysis of RNA microarray data from isolated neuroglia cells and the comparison the number of genes deregulated by plant extracts and their fixed herbal formulation might be a useful tool/method for assessment of synergistic and antagonistic interactions of herbal extracts in human organism. Combination of APE and ESE in KJ formulation is most likely justified.  相似文献   

11.
BackgroundUlcerative colitis (UC) is a chronic relapsing inflammatory disease that markedly elevates the risk of colon cancers and results in disability. The disrupted immune homeostasis has been recognized as a predominant player in the pathogenesis of UC. However, the overall remission rate of current therapies based on immunoregulation is still unsatisfactory. Si-Ni-San (SNS) has been found effective in relieving UC through thousands of years of clinical practice, yet the specific mechanisms of the protective effect of SNS were not fully elucidated.PurposeWe aim to investigate the therapeutic effects of SNS against the development of chronic colitis and the underlying mechanisms.MethodsWe established a DSS-induced chronic experimental colitis mouse model to evaluate the effect of SNS. RNA-sequencing, bioinformatic analysis, and in vitro studies were performed to investigate the underlying mechanisms.ResultsOur data demonstrated that SNS significantly ameliorated chronic experimental colitis via inhibiting the expression of genes associated with inflammatory responses. Interestingly, SNS significantly suppressed DSS-induced type I interferon (IFN) responses instead of directly downregulating the production of pro-inflammatory cytokines, such as Il-6. In vitro study further found that SNS selectively inhibited STING and RIG-I pathway-induced type I IFN responses by modulating TBK1- and IRF3-dependent signaling transduction. SNS also suppressed the expression of IFN-stimulated genes by directly inhibiting STAT1 and STAT2 activation.ConclusionOur study not only provides novel insights into the pathogenic role of type I IFN responses in colitis but also suggested that SNS or bioactive compounds derived from SNS may serve as novel therapeutic strategies for the treatment of UC via interfering type I IFN-mediated inflammation.  相似文献   

12.
BackgroundPeritoneal dialysis-associated peritonitis (PDAP) is the most common complication in peritoneal dialysis patients. We propose screening for characteristic expressed proteins in the dialysate of PDAP patients to provide clues for the diagnosis of PDAP and its therapeutic targets.MethodsDialysate samples were collected from patients with a first diagnosis of PDAP (n = 15) and from patients who had not experienced peritonitis (Control, n = 15). Data-independent acquisition (DIA) proteomic analysis was used to screen for differentially expressed proteins (DEPs). Co-expression networks were constructed via weighted gene co-expression network analysis (WGCNA) for detection of gene modules. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used for functional annotation of DEPs and gene modules. Hub proteins were validated using the parallel reaction monitoring (PRM) method.ResultsA total of 142 DEPs in the dialysate of PDAP patients were identified. 70 proteins were upregulated and 72 proteins were downregulated. GO and KEGG analysis showed that DEPs were mainly enriched in cell metabolism, glycolysis/glycogenesis and hypoxia-inducible factor-1 signaling pathway. Subsequently, a co-expression network was constructed and four gene modules were detected. Myeloperoxidase (MPO) and myeloperoxidase (HP) were the key proteins of the blue and turquoise modules, respectively. Additionally, PRM analysis showed that the expression of MPO and HP was significantly upregulated in the PDAP group compared to the non-peritonitis group, which was consistent with our proteomics data.ConclusionMPO and HP were differentially expressed in the dialysate of PDAP patients and may be potential diagnostic and therapeutic targets for PDAP.  相似文献   

13.
BackgroundMajor components are often used as marker compounds for quality control of traditional Chinese medicines (TCMs). However, these compounds may not necessarily bioavailable and active in vivo, thereby, failing to control the “quality”.PurposeThe purpose of this paper is to develop a novel strategy integrating absorption and activity deduced from network pharmacology to identify more reasonable markers for quality control of TCM formulas using Wu Ji Bai Feng Pill (WJBFP) as an example.Study DesignHuman Caucasian colon adenocarcinoma (Caco-2) cell transport studies and a bioavailability-enhanced network pharmacological approach were integrated to identify better phytochemical markers for quality control.MethodsThe absorption of multiple components in WJBFP was evaluated by a Caco-2 cell culture model. Nine databases were used to identify potential targets in the network pharmacology analysis. Cytoscape 3.7.2 was employed for the network data integration, visualization, and centrality analysis. Molecular docking was carried out to investigate the binding affinity of the identified markers to their candidate targets.ResultsThe apparent permeability coefficient (Papp) and efflux ratio (ER) of 66 compounds were determined. Five hundred and two putative targets and 187 primary dysmenorrhea (PD) related targets were identified. Twenty-two candidate targets interacting with 20 potential active compounds were screened with the putative PD related targets intersection network using Degree Centrality (DC) ranking. By integrating absorption, 16 candidate targets interacting with 8 potential active compounds were identified. Besides, 53 compounds hitting candidate targets were divided into two classes according to their DC values. Then each of the two classes of DC was stratified into two groups based on the Papp for a total of four classes. Finally, five compounds belonging to Class 1 with higher DC and higher Papp, formononetin, ferulic acid, isoliquiritigenin, neocryptotanshinone and senkyunolide A, were identified as potential bioavailable phytochemical markers for the quality control of WJBFP against PD. Furthermore, molecular docking analysis validated the interplay between candidate targets and marker ingredients.ConclusionA novel strategy combining intestinal absorption with network pharmacology analysis was successfully established to identify bioavailable and bioactive markers for quality control of WJBFP against PD.  相似文献   

14.
BackgroundUlcerative colitis (UC) is a chronic inflammatory bowel disease with high morbidity, which leads to poor quality of life. The Xianglian pill (XLP) is a classical Chinese patent medicine and has been clinically proven to be an effective treatment for UC.PurposeThe pharmacological mechanism of the key bioactive ingredients of XLP for the treatment of UC was investigated by a network pharmacology and pharmacokinetics integrated strategy.Study design and methodsNetwork pharmacology was used to analyze the treatment effect of nine quantified XLP ingredients on UC. Key pathways were enriched and analyzed by protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses. The effect of XLP on Th17 cell differentiation was validated using a mouse model of UC. The binding of nine compounds with JAk2, STAT3, HIF-1α, and HSP90AB1 was assessed using molecular docking. A simple and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantification of nine ingredients from XLP in plasma and applied to a pharmacokinetic study following oral administration.ResultsNine compounds of XLP, including coptisine, berberine, magnoflorine,berberrubine, jatrorrhizine, palmatine, evodiamine, rutaecarpine, and dehydrocostus lactone, were detected. Network pharmacology revealed 50 crossover genes between the nine compoundsand UC. XLP treats UC mainly by regulating key pathways of the immune system, including Th17 cell differentiation, Jak-Stat, and PI3K-Akt signaling pathways. An in vivo validation in mice found that XLP inhibits Th17 cell differentiation by suppressing the Jak2-Stat3 pathway, which alleviates mucosal inflammation in UC. Molecular docking confirmed that eight compounds are capable of binding with JAk2, HIF-1α, and HSP90AB1, further confirming the inhibitory effect of XLP on the Jak2-Stat3 pathway. Moreover, apharmacokinetic study revealed that the nine ingredients of XLP are exposed in the plasma and colon tissue, which demonstrates its pharmacological effect on UC.ConclusionThis study evaluates the clinical treatment efficacy of XLP for UC. The network pharmacology and pharmacokinetics integrated strategy evaluation paradigm is efficient in discovering the key pharmacological mechanism of herbal formulae.  相似文献   

15.
16.
BackgroundSafflower yellow (SY) is the main active ingredient of safflower, with various pharmacological effects such as anticoagulating, antioxidant, and anti-arthritis effects.PurposeTo investigate the anti-inflammatory and chondrocyte protecting role of SY, which subsequently leads to the inhibition of cartilage degradation.MethodsRat chondrocytes were stimulated with tumor necrosis factor α (TNF-α) with or without SY treatment. Following this, CCK-8 assay was performed to detect cytotoxicity. RT-qPCR, Western blotting, and immunofluorescence staining were used to detect the gene/protein expression of typical cartilage matrix genes and related inflammatory markers. Subsequently, EdU assay was used to evaluate cell proliferation. RNA sequencing, online target prediction, and molecular docking were performed to determine the possible molecular targets and pathways.ResultsThe results showed that SY restored the TNF-α-induced up-regulation of IL-1β, PTGS2, and MMP-13 and down-regulation of COL2A1 and ACAN. Furthermore, it recovered cell proliferation by suppressing TNF-α. Gene expression profiles identified 717 differentially expressed genes (DEGs) in the cells cultured with or without SY under TNF-α stimulation. After pathway enrichment, PI3K-Akt, TNF, Cytokine-cytokine receptor interaction, NF-κB, NOD-like receptor, and Chemokine signaling pathways were notably selected to highlight NFKBIA, CCL5, CCL2, IL6, and TNF as potential targets in osteoarthritis (OA). SY inhibited TNF-α-induced activation of NF-κB and endoplasmic reticulum (ER) stress by promoting AMPK phosphorylation along with SIRT1 expression. Further, SY reduced MMP-13 expression and targeted COX-2 for decreasing PGE2 release. In addition, anterior cruciate ligament transection-induced OA was ameliorated by local administration of SY.ConclusionThese results demonstrate that SY protects chondrocytes and inhibits inflammation by regulating the NF-κB/SIRT1/AMPK pathways and ER stress, thus preventing cartilage degeneration in OA.  相似文献   

17.
BackgroundLongstanding, successful use of combinations of phytopharmaceuticals in traditional Chinese medicine (TCM) has caught the attention of several pharmacologists to natural medicines. However, the development and popularisation of TCM is mainly limited because of the unavailability of reports clarifying the mechanisms of action and pharmacologically active ingredients in such formulations. Previous studies on natural medicines have mostly focused on their dominant components using forward pharmacology which often neglects trace components. It is necessary to assess the pharmacological and therapeutic superiority of many such trace components in comparison with single constituents.PurposeIn this study, we aimed to propose a new pharmacological research strategy for TCM. In particular, we presented the possibility that the effective mechanism of action of trace components of TCM is based on synthetic lethality. We sincerely hope to explore this theory further.MethodWe obtained retrieve published research information related to synthetic lethality, phytochemicals and Chinese medicine from PubMed and Google scholar. Based on the inclusion criteria, 71 studies were selected and discussed in this review.ResultsAs an interaction among genes, synthetic lethality can amplify co-regulatory biological effects exponentially. Synthetic strategies have been successfully applied for research and development of anti-tumour agents, including poly ADP-ribose polymerase inhibitors and clinical combination of chemotherapeutic agents for efficacy enhancement and toxicity reduction. TCM drugs contain several secondary metabolites to combat environmental stresses, providing a multi-component basis for corresponding synergistic targets. Therefore, we aimed to study whether this method could be used to identify active components present in trace amounts in TCM drugs. Based on a reverse concept of target–component–effect and identified synergistic targets, we explored the mechanisms of action of weakly active components present in trace amounts in TCM drugs to assess combinations of potential synergistic components.ConclusionThis pattern of synthetic lethality not only elucidated the mechanisms of action of TCM drugs from a new perspective but also inspired future studies on discovering naturally occurring active components.  相似文献   

18.
19.
BackgroundQuercetin is a natural flavonoid, which widely exists in nature, such as tea, coffee, apples, and onions. Numerous studies have showed that quercetin has multiple biological activities such as anti-oxidation, anti-inflammatory, and anti-aging. Hence, quercetin has a significant therapeutic effect on cancers, obesity, diabetes, and other diseases. In the past decades, a large number of studies have shown that quercetin combined with other agents can significantly improve the overall therapeutic effect, compared to single use.PurposeThis work reviews the pharmacological activities of quercetin and its derivatives. In addition, this work also summarizes both in vivo and in vitro experimental evidence for the synergistic effect of quercetin against cancers and metabolic diseases.MethodsAn extensive systematic search for pharmacological activities and synergistic effect of quercetin was performed considering all the relevant literatures published until August 2021 through the databases including NCBI PubMed, Scopus, Web of Science, and Google Scholar. The relevant literatures were extracted from the databases with following keyword combinations: "pharmacological activities" OR "biological activities" OR "synergistic effect" OR "combined" OR "combination" AND "quercetin" as well as free-text words.ResultsQuercetin and its derivatives possess multiple pharmacological activities including anti-cancer, anti-oxidant, anti-inflammatory, anti-cardiovascular, anti-aging, and neuroprotective activities. In addition, the synergistic effect of quercetin with small molecule agents against cancers and metabolic diseases has also been confirmed.ConclusionQuercetin cooperates with agents to improve the therapeutic effect by regulating signal molecules and blocking cell cycle. Synergistic therapy can reduce the dose of agents and avoid the possible toxic and side effects in the treatment process. Although quercetin treatment has some potential side effects, it is safe under the expected use conditions. Hence, quercetin has application value and potential strength as a clinical drug. Furthermore, quercetin, as the main effective therapeutic ingredient in traditional Chinese medicine, may effectively treat and prevent coronavirus disease 2019 (COVID-19).  相似文献   

20.
《Phytomedicine》2015,22(6):666-678
BackgroundZuccagnia punctata Cav. (Fabaceae) and Larrea nitida Cav. (Zygophyllaceae) are indistinctly or jointly used in traditional medicine for the treatment of fungal-related infections. Although their dichloromethane (DCM) extract have demonstrated moderate antifungal activities when tested on their own, antifungal properties of combinations of both plants have not been assessed previously.PurposeThe aim of this study was to establish with statistical rigor whether Z. punctata (ZpE) and L. nitida DCM extract (LnE) interact synergistically against the clinically important fungi Candida albicans and Candida glabrata and to characterize the most synergistic combinations.Study designFor synergism assessment, the statistical-based Boik's design was applied. Eight ZpE–LnE fixed-ratio mixtures were prepared from four different months of 1 year and tested against Candida strains. Lϕ (Loewe index) of each mixture at different fractions affected (ϕ) allowed for the finding of the most synergistic combinations, which were characterized by HPLC fingerprint and by the quantitation of the selected marker compounds.MethodsLϕ and confidence intervals were determined in vitro with the MixLow method, once the estimated parameters from the dose–response curves of independent extracts and mixtures, were obtained. Markers (four flavonoids for ZpE and three lignans for LnE) were quantified in each extract and their combinations, with a valid HPLC–UV method. The 3D-HPLC profiles of the most synergistic mixtures were obtained by HPLC–DAD.ResultsThree over four IC50ZpE/IC50LnE fixed-ratio mixtures displayed synergistic interactions at effect levels ϕ > 0.5 against C. albicans. The dosis of the most synergistic (Lϕ = 0.62) mixture was 65.96 µg/ml (ZpE = 28%; LnE = 72%) containing 8 and 36% of flavonoids and lignans respectively. On the other hand, one over four IC50ZpE/IC50LnE mixtures displays synergistic interactions at ϕ > 0.5 against C. glabrata. The dosis of the most synergistic (Lϕ = 0.67) mixture was 168.23 µg/ml (ZpE = 27%; LnE = 73%) with 9.7 and 31.6% of flavonoids and lignans respectively.Conclusions Studies with the statistical-based MixLow method, allowed for the finding of the most ZpE–LnE synergistic mixtures, giving support to a proper joint use of both antifungal herbs in traditional medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号