首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The potent pro-inflammatory actions of members of the interleukin (IL)-6 cytokine and toll-like receptor (TLR) families have been implicated in numerous inflammatory disorders, as well as inflammation-associated cancers. It is fast becoming apparent that a hallmark of many such inflammatory-related diseases is the overlapping deregulated expression of members of each family, and the consequent augmented activation of shared signaling pathways. Here, we review the molecular basis by which the IL-6 cytokine and TLR family signaling networks are regulated, and integrate recent advances exploring the intimate cross-regulation of these two families which may provide the foundation for the future development of therapeutics to target chronic inflammation-associated diseases, including cancer.  相似文献   

3.
Airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) are characterized by excessive inflammation and are exacerbated by nontypeable Haemophilus influenzae (NTHi). Airway epithelial cells mount the initial innate immune responses to invading pathogens and thus modulate inflammation. While inflammation is necessary to eliminate a pathogen, excessive inflammation can cause damage to the host tissue. Therefore, the inflammatory response must be tightly regulated and deciphering the signaling pathways involved in this response will enhance our understanding of the regulation of the host inflammatory response. NTHi binds to TLR2 and signal propagation requires the adaptor molecule myeloid differentiation factor 88 (MyD88). An alternative spliced form of MyD88 is called MyD88 short (MyD88s) and has been identified in macrophages and embryonic cell lines as a negative regulator of inflammation. However, the role of MyD88s in NTHi-induced inflammation in airway epithelial cells remains unknown. Here we show that NTHi induces MyD88s expression and MyD88s is a negative regulator of inflammation in airway epithelial cells. We further demonstrate that MyD88s is positively regulated by IKKβ and CREB and negatively regulated by ERK1/2 signaling pathways. Taken together these data indicate that airway inflammation is controlled in a negative feedback manner involving MyD88s and suggest that airway epithelial cells are essential to maintain immune homeostasis.  相似文献   

4.
Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.  相似文献   

5.
Alzheimer’s disease (AD) is the most common cause of senile dementia. Many inflammatory factors such as amyloid-β and pro-inflammatory cytokines are known to contribute to the inflammatory response in the AD brain. Sphingolipids are widely known to have roles in the pathogenesis of inflammatory diseases, where the precise roles for sphingolipids in inflammation-associated pathogenesis of AD are not well understood. Here we performed a network analysis to clarify the importance of sphingolipids and to model relationships among inflammatory factors and sphingolipids in AD. In this study, we have updated sphingolipid signaling and metabolic cascades in a map of AD signaling networks that we named “AlzPathway,” a comprehensive knowledge repository of signaling pathways in AD. Our network analysis of the updated AlzPathway indicates that the pathways related to ceramide are one of the primary pathways and that ceramide is one of the important players in the pathogenesis of AD. The results of our analysis suggest the following two prospects about inflammation in AD: (1) ceramide could play important roles in both inflammatory and anti-inflammatory pathways of AD, and (2) several factors such as Sphingomyelinase and Siglec-11 may be associated with ceramide related inflammation and anti-inflammation pathways in AD. In this study, network analysis of comprehensive knowledge repository reveals a dual role for ceramide in AD. This result provides a clue to clarify sphingolipids related inflammatory and anti-inflammatory pathways in AD.  相似文献   

6.
Feng Li  Wei Xu  Shimin Zhao 《遗传学报》2013,40(7):367-374
Mounting evidence suggests that cellular metabolites, in addition to being sources of fuel and macromolecular substrates, are actively involved in signaling and epigenetic regulation. Many metabolites, such as cyclic AMP, which regulates phosphorylation/dephosphorylation, have been identified to modulate DNA and histone methylation and protein stability. Metabolite-driven cellular regulation occurs through two distinct mechanisms: proteins allosterically bind or serve as substrates for protein signaling pathways, and metabolites covalently modify proteins to regulate their functions. Such novel protein metabolites include fumarate, succinyl-CoA, propionyl-CoA, butyryl-CoA and crontonyl-CoA. Other metabolites, including α-ketoglutarate, succinate and fumarate, regulate epigenetic processes and cell signaling via protein binding. Here, we summarize recent progress in metabolite-derived post-translational protein modification and metabolite-binding associated signaling regulation. Uncovering metabolites upstream of cell signaling and epigenetic networks permits the linkage of metabolic disorders and human diseases, and suggests that metabolite modulation may be a strategy for innovative therapeutics and disease prevention techniques.  相似文献   

7.
Dietary intervention strategies have proven to be an effective means of decreasing several risk factors associated with the development of atherosclerosis. Endothelial cell dysfunction influences vascular inflammation and is involved in promoting the earliest stages of lesion formation. Caveolae are lipid raft microdomains abundant within the plasma membrane of endothelial cells and are responsible for modulating receptor-mediated signal transduction, thus influencing endothelial activation. Caveolae have been implicated in the regulation of enzymes associated with several key signaling pathways capable of determining intracellular redox status. Diet and plasma-derived nutrients may modulate an inflammatory outcome by interacting with and altering caveolae-associated cellular signaling. For example, omega-3 fatty acids and several polyphenolics have been shown to improve endothelial cell function by decreasing the formation of ROS and increasing NO bioavailability, events associated with altered caveolae composition. Thus, nutritional modulation of caveolae-mediated signaling events may provide an opportunity to ameliorate inflammatory signaling pathways capable of promoting the formation of vascular diseases, including atherosclerosis.  相似文献   

8.
9.
10.
It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including chronic inflammatory liver diseases, are associated with changes in central neural transmission that result in alterations in behavior. These behavioral changes include sickness behaviors, such as fatigue, cognitive dysfunction, mood disorders, and sleep disturbances. While such behaviors have a significant impact on quality of life, the changes within the brain and the communication pathways between the liver and the brain that give rise to changes in central neural activity are not fully understood. Traditionally, neural and humoral communication pathways have been described, with the three cytokines TNFα, IL-1β, and IL-6 receiving the most attention in mediating communication between the periphery and the brain, in the setting of peripheral inflammation. However, more recently, we described an immune-mediated communication pathway in experimentally induced liver inflammation whereby, in response to activation of resident immune cells in the brain (i.e., the microglia), peripheral circulating monocytes transmigrate into the brain, leading to development of sickness behaviors. These signaling pathways drive changes in behavior by altering central neurotransmitter systems. Specifically, changes in serotonergic and corticotropin-releasing hormone neurotransmission have been demonstrated and implicated in liver inflammation-associated sickness behaviors. Understanding how the liver communicates with the brain in the setting of chronic inflammatory liver diseases will help delineate novel therapeutic targets that can reduce the burden of symptoms in patients with liver disease.  相似文献   

11.
12.
Biologically active oxidized phospholipids can initiate and modulate many of the cellular events attributed to inflammation leading to atherosclerosis. Produced by enzymatic or non-enzymatic processes, these molecules interact with various cells via specific receptors and in general give rise to inflammatory signals. There is considerable evidence that oxidized phospholipids accumulate in vivo and play significant roles in atherosclerosis and thrombosis, suggesting that oxidized phospholipids could be biomarkers that reflect the global extent of these diseases in vivo. Thus, understanding the biosynthetic pathways, receptor specificity and signaling processes of oxidized phospholipids is important in understanding atherosclerosis, thrombosis and related inflammatory diseases.  相似文献   

13.
14.
15.
Myeloid differentiation protein 2 (MD2) is a co-receptor of toll-like receptor 4 (TLR4) responsible for the recognition of lipopolysaccharide (LPS) and mediates a series of TLR4-dependent inflammatory responses in inflammatory lung diseases including acute lung injury (ALI). Targeting MD2 thus may provide a therapeutic strategy against these lung diseases. In this study, we identified a novel compound 4k with the potent anti-inflammatory activity among 39 methyl gallate derivatives (MGDs). MGD 4k exhibited a high binding affinity to MD2, which in turn prevented the formation of the LPS/MD2/TLR4 complex. In addition, MGD 4k significantly reversed the upregulation of LPS-induced inflammatory mediators such as tumor necrosis factor-α, interleukin-6, intracellular adhesion molecule-1, vascular cell adhesion molecule-1, and monocyte chemoattractant protein-1 in vitro and in vivo. Mechanistically, MGD 4k performed anti-inflammatory function by inactivating JNK, ERK and p38 signaling pathways. Taken together, our study identified MGD 4k as a novel potential therapeutic agent for ALI through inhibiting MD2, inflammatory responses, and major inflammation-associated signaling pathways.  相似文献   

16.
17.
Increasing knowledge on the cell cycle deregulations in cancers has promoted the introduction of phytochemicals, which can either modulate signaling pathways leading to cell cycle regulation or directly alter cell cycle regulatory molecules, in cancer therapy. Most human malignancies are driven by chromosomal translocations or other genetic alterations that directly affect the function of critical cell cycle proteins such as cyclins as well as tumor suppressors, e.g., p53. In this respect, cell cycle regulation and its modulation by curcumin are gaining widespread attention in recent years. Extensive research has addressed the chemotherapeutic potential of curcumin (diferuloylmethane), a relatively non-toxic plant derived polyphenol. The mechanisms implicated are diverse and appear to involve a combination of cell signaling pathways at multiple levels. In the present review we discuss how alterations in the cell cycle control contribute to the malignant transformation and provide an overview of how curcumin targets cell cycle regulatory molecules to assert anti-proliferative and/or apoptotic effects in cancer cells. The purpose of the current article is to present an appraisal of the current level of knowledge regarding the potential of curcumin as an agent for the chemoprevention of cancer via an understanding of its mechanism of action at the level of cell cycle regulation. Taken together, this review seeks to summarize the unique properties of curcumin that may be exploited for successful clinical cancer prevention.  相似文献   

18.
19.
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections.  相似文献   

20.
IL-6 activates various cell types carrying the membrane bound IL-6R (classical IL-6 signaling) as well as IL-6R(-) gp130(+) cells via the soluble IL-6R (IL-6 trans-signaling). IL-6 signaling plays a pivotal role in controlling the differentiation and activation of T lymphocytes by inducing the Jak/STAT-3 and the Ras/Erk/C/EBP pathways. In particular, IL-6 modulates the resistance of T cells against apoptosis, induces activation of T helper cells and controls the balance between regulatory T cells and Th17 cells. Importantly, recent findings suggest that blockade of IL-6 signaling is effective in treating experimental models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, diabetes, multiple sclerosis, asthma and rheumatoid arthritis as well as models of inflammation-associated cancer. Thus, anti-IL-6/anti-IL-6R strategies emerge as promising novel approaches for therapy of inflammatory diseases in humans. In this review article, we discuss the latest findings on the role of IL-6 in experimental models of autoimmunity and cancer, as well as clinical perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号