首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摘要 目的:探讨双歧杆菌MIMBb75通过调节血管活性肠肽(VIP)/环磷酸腺苷(cAMP)/蛋白激酶A(PKA)和哺乳动物雷帕霉素靶蛋白(mTOR)通路对溃疡性结肠炎(UC)小鼠的影响。方法:BALB/c小鼠随机分为正常对照(NC)组、结肠炎模型(UC)组、Mesalazine组和MIMBb75低、高剂量组、MIMBb75高剂量+VIP antagonist组、MIMBb75高剂量+MHY1485组(每组10只),除NC组外均采用5%葡聚糖硫酸钠(DSS)诱导UC模型。治疗结束后,观察小鼠的一般情况及UC疾病活动指数(DAI),检测小鼠肠道组织病理损伤、结肠组织中髓过氧化物酶(MPO)活性、肠道菌群多样性(Chao指数、Shannon指数和Simpson指数)及结肠组织VIP、cAMP、PKA、水通道蛋白3(AQP3)、mTOR、核糖体蛋白S6激酶(S6K1)的mRNA和蛋白水平。结果:与UC组相比,MIMBb75低、高剂量组和Mesalazine组小鼠的体重升高、DAI评分降低,组织病理损伤得到改善,结肠长度增加,MPO活性降低,Chao指数、Shannon指数和Simpson指数升高;VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平升高,mTOR和S6K1 mRNA及其蛋白的磷酸化水平降低(P<0.05)。与MIMBb75高剂量组相比,MIMBb75高剂量+VIP antagonist组VIP、cAMP、PKA、AQP3的mRNA水平和VIP、cAMP、AQP3蛋白的表达及PKA的磷酸化水平降低(P<0.05);MIMBb75高剂量+MHY1485组mTOR和S6K1 mRNA及其蛋白的磷酸化水平升高(P<0.05)。VIP antagonist和MHY1485均能逆转MIMBb75对UC小鼠的保护作用,使其结肠损伤加重,MPO活性增高(P<0.05)。结论:双歧杆菌可改善UC小鼠的结肠损伤,增加肠道菌群的多样性,这可能与激活VIP/cAMP/PKA通路、抑制mTOR通路有关。  相似文献   

2.
3.
BackgroundUlcerative colitis (UC) is an intricate enteric disease with a rising incidence that is closely related to mucosa-barrier destruction, gut dysbacteriosis, and immune disorders. Emodin (1,3,8-trihydroxy-6-methyl-9,10-anthraquinone, EMO) is a natural anthraquinone derivative that occurs in many Polygonaceae plants. Its multiple pharmacological effects, including antioxidant, immune-suppressive, and anti-bacteria activities, make it a promising treatment option for UC. However, its poor solubility, extensive absorption, and metabolism in the upper gastrointestinal tract may compromise its anti-colitis effects.PurposeEMO was loaded in a colon-targeted delivery system using multifunctional biomedical materials and the enhanced anti-colitis effect involving mucosa reconstruction was investigated in this study.MethodsEMO-loaded Poly (DL-lactide-co-glycolide)/Eudragit S100/montmorillonite nanoparticles (EMO/PSM NPs) were prepared by a versatile single-step assembly approach. The colon-specific release behavior was characterized in vitro and in vivo, and the anti-colitis effect was evaluated in dextran sulfate sodium (DSS)-induced acute colitis in mice by weight loss, disease activity index (DAI) score, colon length, histological changes, and colitis biomarkers. The integrity of the intestinal mucosal barrier was evaluated through transwell co-culture model in vitro and serum zonulin-related tight junctions and mucin2 (MUC2) in vivo.ResultsEMO/PSM NPs with a desirable hydrodynamic diameter (~ 235 nm) and negative zeta potential (~ -31 mV) could prevent the premature drug release (< 4% in the first 6 h in vitro) in the upper gastrointestinal tract (GIT) and boost retention in the lower GIT and inflamed colon mucosa in vivo. Compared to free EMO-treatment of different doses in UC mice, the NPs could enhance the remedial efficacy of EMO in DAI decline, histological remission, and regulation of colitis indicators, such as myeloperoxidase (MPO), nitric oxide (NO), and glutathione (GSH). The inflammatory factors including induced nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and IL-1β were suppressed by EMO/PSM NPs at both mRNA and protein levels. The obtained NPs could also promote the regeneration of the mucosal barrier via reduced fluorescein isothiocyanate (FITC)-dextran leakage in the transwell co-culture model and decreased serum zonulin levels, which was demonstrated to be associated with the upregulated tight junctions (TJs)-related proteins (claudin-2, occludin, and zo-1) and MUC2 at mRNA level. Moreover, the NPs could contribute to attenuating the liver injury caused by free EMO under excessive immune inflammation.ConclusionOur results demonstrated that EMO/PSM NPs could specifically release EMO in the diseased colon, and effectively enhance the anti-colitis effects of EMO related to intestinal barrier improvement. It can be considered as a novel potential alternative for oral colon-targeted UC therapy by increasing therapeutic efficacy and reducing side-effects.  相似文献   

4.
为探讨桂皮醛(CA)对实验性溃疡性结肠炎(UC)小鼠的保护作用及其初步机制,用柳氮磺胺吡啶(300 mg/kg)做为阳性对照,CA分别以150、250、500 mg/kg的剂量对3%葡聚硫酸钠(DSS)诱导的UC小鼠进行灌胃治疗.观察小鼠给药前后状态的变化并进行DAI评分,HE染色法观察小鼠结肠组织形态的变化并进行病理...  相似文献   

5.
Accurate and high-throughput technologies are needed for identification of new therapeutic targets and for optimizing therapy in inflammatory bowel disease. Our aim was to assess multi-analyte protein-based assays of cytokines/chemokines using Luminex technology. We have reported that Luminex-based profiling was useful in assessing response to L-arginine therapy in the mouse model of dextran sulfate sodium colitis. Therefore, we studied prospectively collected samples from ulcerative colitis (UC) patients and control subjects. Serum, colon biopsies, and clinical information were obtained from subjects undergoing colonoscopy for evaluation of UC or for non-UC indications. In total, 38 normal controls and 137 UC cases completed the study. Histologic disease severity and the Mayo Disease Activity Index (DAI) were assessed. Serum and colonic tissue cytokine/chemokine profiles were measured by Luminex-based multiplex testing of 42 analytes. Only eotaxin-1 and G-CSF were increased in serum of patients with histologically active UC vs. controls. While 13 cytokines/chemokines were increased in active UC vs. controls in tissues, only eotaxin-1 was increased in all levels of active disease in both serum and tissue. In tissues, eotaxin-1 correlated with the DAI and with eosinophil counts. Increased eotaxin-1 levels were confirmed by real-time PCR. Tissue eotaxin-1 levels were also increased in experimental murine colitis induced by dextran sulfate sodium, oxazolone, or Citrobacter rodentium, but not in murine Helicobacter pylori infection. Our data implicate eotaxin-1 as an etiologic factor and therapeutic target in UC, and indicate that Luminex-based assays may be useful to assess IBD pathogenesis and to select patients for anti-cytokine/chemokine therapies.  相似文献   

6.
7.
BackgroundAs a chronic inflammatory disease, ulcerative colitis (UC) is relevant to a rising risk of colorectal cancer. Dihydroberberine (DHBB), a natural occurring isoquinoline alkaloid with various bioactivities, was found in many plants including Coptis chinensis Franch. (Ranunculaceae), Phellodendron chinense Schneid. (Rutaceae), and Chelidonium majus L. (Papaveraceae). However, its protective effect on UC is sparsely dissected out.PurposeTo explore the protective role and underlying mechanism of DHBB on a model of colitis.MethodsAcute colitis model was established by gavage with 3% dextran sulfate sodium (DSS) for 8 days. Influence of DHBB on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Pathological injury of colon tissues was examined by hematoxylin-eosin and Alcian blue staining. The expression of intestinal mucosal barrier function proteins, immune-inflammation related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR.ResultsDHBB treatment effectively alleviated DSS-induced UC by relieving clinical manifestations, DAI scores and pathological damage, which exerted similar beneficial effect to azathioprine (AZA), and better than berberine (BBR). In addition, DHBB significantly improved the gut barrier function through up-regulating the levels of tight junction proteins and mucins. Furthermore, DHBB dramatically ameliorated colonic immune-inflammation state, which was related to the decrease of colonic pro-inflammatory cytokines and immunoglobulin through blocking TLR4/MyD88/NF-κB signal pathway.ConclusionThese results demonstrated that DHBB exerted a significant protective effect on DSS-induced experimental UC, at least partly through suppressing immune-inflammatory response and maintaining gut barrier function.  相似文献   

8.
9.
Ulcerative colitis (UC), a major form of inflammatory bowel disease (IBD), is on the rise worldwide. Approximately three million people suffer from IBD in the United States alone, but the current therapeutic options (e.g., corticosteroids) come with adverse side effects including reduced ability to fight infections. Thus, there is a critical need for developing effective, safe and evidence-based food products with anti-inflammatory activity. This study evaluated the antiinflammatory potential of purple-fleshed potato using a dextran sodium sulfate (DSS) murine model of colitis. Mice were randomly assigned to control (AIN-93G diet), P15 (15% purple-fleshed potato diet) and P25 (25% purple-fleshed potato diet) groups. Colitis was induced by 2% DSS administration in drinking water for six days. The results indicated that purple-fleshed potato supplementation suppressed the DSS-induced reduction in body weight and colon length as well as the increase in spleen and liver weights. P15 and P25 diets suppressed the elevation in the intestinal permeability, colonic MPO activity, mRNA expression and protein levels of pro-inflammatory interleukins IL-6 and IL-17, the relative abundance of specific pathogenic bacteria such as Enterobacteriaceae, Escherichia coli (E. coli) and pks+ E. coli, and the increased flagellin levels induced by DSS treatment. P25 alone suppressed the elevated systemic MPO levels in DSS-exposed mice, and elevated the relative abundance of Akkermansia muciniphila (A. muciniphila) as well as attenuated colonic mRNA expression level of IL-17 and the protein levels of IL-6 and IL-1β. Therefore, the purple-fleshed potato has the potential to aid in the amelioration of UC symptoms.  相似文献   

10.
AimsVascular endothelial growth factor (VEGF) and pathologic angiogenesis have been demonstrated to play a pathogenic role in the development and progression of inflammatory bowel disease. Thus, we hypothesized that the potent anti-angiogenic factor endostatin might play a beneficial role in experimental ulcerative colitis (UC).Main methodsWe used three animal models of UC: (1) induced by 6% iodoacetamide (IA) in rats, or (2) by 3% dextran sulfate sodium (DSS) in matrix metalloproteinase-9 (MMP-9) knockout (KO) and wild-type mice, and (3) interleukin-10 (IL-10) KO mice. Groups of MMP-9 KO mice with DSS-induced UC were treated with endostatin or water for 5 days.Key findingsWe found concomitant upregulation of VEGF, PDGF, MMP-9 and endostatin in both rat and mouse models of UC. A positive correlation between the levels of endostatin or VEGF and the sizes of colonic lesions was seen in IA-induced UC. The levels and activities of MMP-9 were also significantly increased during UC induced by IA and IL-10 KO. Deletion of MMP-9 decreased the levels of endostatin in both water- and DSS-treated MMP-9 KO mice. Treatment with endostatin significantly improved DSS-induced UC in MMP-9 KO mice.Significance1) Concomitantly increased endostatin is a defensive response to the increased VEGF in UC, 2) MMP-9 is a key enzyme to generate endostatin which may modulate the balance between VEGF and endostatin during experimental UC, and 3) endostatin treatment plays a beneficial role in UC. Thus, anti-angiogenesis seems to be a new therapeutic option for UC.  相似文献   

11.
Hesperidin, a flavanone-type flavonoid, is abundant in citrus fruit and has a wide range of pharmacological effects. Here we investigated the effect of Hesperidin on dextran sulphate sodium (DSS)-induced experimental ulcerative colitis in mice. Sulfasalazine (positive control) and Hesperidin in doses of 10, 40 and 80 mg/kg were administered orally once a day for 7 days, beginning concurrently with exposure to DSS. The symptom of ulcerative colitis was evaluated by disease activity index (DAI) and the wet weight of colon. Myeloperoxidase (MPO) activity, malondialdehyde (MDA) content and the levels of interleukin-4 (IL-4) and interleukin-6 (IL-6) in serum were measured to observe the possible mechanisms. Oral administration of Hesperidin significantly decreased DAI, MPO activity, MDA content and the level of IL-6 in serum (p<0.01), while there was no significantly effect on the level of IL-4 in serum. These results demonstrate that Hesperidin can ameliorate DSS-induced experimental colitis, and may be useful in the prevention and treatment of colitis.  相似文献   

12.
Background5-Hydroxy-4-methoxycanthin-6-one (PQ-A) is the main active compound in Ramulus et Folium Picrasmae, a Chinese herbal medicine commonly used in colitis treatment.PurposeTo clarify PQ-A's role and mechanism in colitis treatment based on a non-targeted metabolomics study.MethodsRats with ulcerative colitis (UC) established with 4% dextran sulfate sodium (DSS) were orally treated with PQ-A. Body weight, disease activity index (DAI), colon length, biochemical parameters (MDA and SOD), and histopathological score in colon tissue were measured. A UPLC-Q-TOF-MS/MS approach-based metabolomics analysis was conducted to explore the underlying mechanisms of PQ-A in colitis treatment. Inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10) concentrations in serum and their protein levels in the colon were determined. CD3 and NF-κB/p65 immunohistochemistry in the colon was semi-quantified. The related protein or mRNA in IKK-NF-κB/p65 signaling pathway was measured by Western blotting or RT-PCR, respectively. Potential molecular interactions between PQ-A and NF-κB/p65 was predicted using DS 2.5 software.ResultsPQ-A significantly prevented body weight loss and colonic shortening in colitic rats, and reduced the DAI and histopathologic score as well. PQ-A decreased MDA levels in the UC rat serum and increased those of SOD. Metabolomics results revealed forty-nine differential metabolites as biomarkers of DSS-induced colitis, demonstrating that the path-mechanism of colitis involved the perturbation of eight metabolic pathways, including alpha-linolenic acid and linoleic acid metabolism, sphingolipid metabolism, retinol metabolism, bile acid metabolism, et al. Thirty-six biomarkers were especially reversed to normal-like levels by PQ-A via regulation of alpha-linolenic acid and linoleic acid metabolism, sphingolipid metabolism, and retinol metabolism, which effectively hinted the potential pharmacological mechanism of PQ-A related to NF-κB/p65 inflammatory signaling. Molecular docking results predicted high affinity interaction between PQ-A and NF-κB/p65, involving hydrogen-bond interactions at five amino acid residues, suggesting NF-κB/p65 as a target. PQ-A decreased TNF-α, IL-1β, and IL-6 concentrations in serum and their protein levels in colon tissue in colitic rats. CD3, MYD88, p-IκBα, NF-κB/p65, and p-NF-κB/p65 expression levels decreased, whereas those of IKKβ and IκBα increased in colitic tissue following PQ-A treatment. PQ-A strongly inhibited nuclear translocation of NF-κB/p65.ConclusionsWe provide an overview of PQ-A's possible mechanism of action in colitis treatment based on serum non-targeted metabolomics. PQ-A treatment can protect rats against DSS-induced colitis by suppressing the NF-κB/p65 signaling pathway.  相似文献   

13.
溃疡性结肠炎(ulcerative colitis,UC)是一种发生于直肠和结肠的慢性非特异性炎症疾病,近年来发病率明显上升。为探究转基因牛乳中提取的重组人乳铁蛋白和重组人溶菌酶对改善UC的作用,采用葡聚糖硫酸钠(dextran sulfate sodium salt,DSS)构建小鼠UC模型,30只雄性C57BL/6N小鼠随机分为空白对照组(CON组)、模型对照组(DSS组)、低浓度乳铁蛋白组(L-rLF组,50 mg·kg-1·BW-1)、高浓度乳铁蛋白组(H-rLF组,100 mg·kg-1·BW-1)、低浓度溶菌酶组(L-rLZM组,50 mg·kg-1·BW-1)和高浓度溶菌酶组(H-rLZM组,100 mg·kg-1·BW-1)。造模后用重组乳铁蛋白和溶菌酶分别灌胃1周,取小鼠血清及结肠,观察器官病理变化,测定炎症因子以及肠道菌群等相关指标。研究结果显示,与模型组相比,低浓度乳铁蛋白组和低浓度溶菌酶组小鼠疾病活动指数(disease activity index,DAI)、结肠缩短量、组织病理学评分均显著降低,且结肠组织中促炎因子(IL-6、lL-1β、TNF-α)表达量、血清和肝脏中脂多糖(lipopolysaccharide,LPS)浓度显著降低,高浓度乳铁蛋白处理组小鼠肠道菌群结构显著改善。表明重组人乳铁蛋白和重组人溶菌酶均可以不同程度地改善小鼠UC,为重组人乳铁蛋白和重组人溶菌酶的未来应用提供了新的思路和理论支持。  相似文献   

14.
15.
The precise role that individual inflammatory cells and mediators play in the development of gastrointestinal (GI) dysfunction and extraintestinal clinical manifestations of ulcerative colitis (UC) is unknown. In this study, we have used a mouse model of UC to establish a central role for eotaxin and, in turn, eosinophils in the development of the immunopathogenesis of this disease. In this model the administration of dextran sodium sulfate (DSS) induces a prominent colonic eosinophilic inflammation and GI dysfunction (diarrhea with blood and shortening of the colon) that resembles UC in patients. GI dysfunction was associated with evidence of eosinophilic cytolytic degranulation and the release of eosinophil peroxidase (EPO) into the colon lumen. By using IL-5 or eotaxin-deficient mice, we show an important role for eotaxin in eosinophil recruitment into the colon during experimental UC. Furthermore, using EPO-deficient mice and an EPO inhibitor resorcinol we demonstrate that eosinophil-derived peroxidase is critical in the development of GI dysfunction in experimental UC. These findings provide direct evidence of a central role for eosinophils and EPO in GI dysfunction and potentially the immunopathogenesis of UC.  相似文献   

16.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease caused by many factors including colonic inflammation and microbiota dysbiosis. Previous studies have indicated that celastrol (CSR) has strong anti-inflammatory and immune-inhibitory effects. Here, we investigated the effects of CSR on colonic inflammation and mucosal immunity in an experimental colitis model, and addressed the mechanism by which CSR exerts the protective effects. We characterized the therapeutic effects and the potential mechanism of CSR on treating UC using histological staining, intestinal permeability assay, cytokine assay, flow cytometry, fecal microbiota transplantation (FMT), 16S rRNA sequencing, untargeted metabolomics, and cell differentiation. CSR administration significantly ameliorated the dextran sodium sulfate (DSS)-induced colitis in mice, which was evidenced by the recovered body weight and colon length as well as the decreased disease activity index (DAI) score and intestinal permeability. Meanwhile, CSR down-regulated the production of pro-inflammatory cytokines and up-regulated the amount of anti-inflammatory mediators at both mRNA and protein levels, and improved the balances of Treg/Th1 and Treg/Th17 to maintain the colonic immune homeostasis. Notably, all the therapeutic effects were exerted in a gut microbiota-dependent manner. Furthermore, CSR treatment increased the gut microbiota diversity and changed the compositions of the gut microbiota and metabolites, which is probably associated with the gut microbiota-mediated protective effects. In conclusion, this study provides the strong evidence that CSR may be a promising therapeutic drug for UC.  相似文献   

17.
In the present study, probiotic Dahi (LaBb Dahi) containing Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 was selected as a probiotic therapy to investigate its protective effect on dextran sodium sulfate (DSS)-induced ulcerative colitis model in mice that mimics the picture in human. LaBb Dahi was prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of L. acidophilus LaVK2 and B. bifidum BbVK3 in buffalo milk (3% fat). Four groups of swiss albino male mice (12 each) were fed buffalo milk (3% fat), buffalo milk (3% fat) plus DSS, Dahi plus DSS, and LaBb Dahi plus DSS, respectively, for 17?days with basal diet. The myeloperoxidase (MPO) activity, levels of tumor necrosis factor-?? (TNF-??), interleukin-6 (IL-6) and interferon (IFN-??) were assessed as inflammatory markers, and the histopathological picture of the colon of mice was studied. DSS-induced colitis appeared to induce significant increase in MPO activity, levels of TNF-??, IL-6 and IFN-??. Feeding with LaBb Dahi offered significant reduction in MPO activity, levels of TNF-??, IL-6 and IFN-?? when compared to either buffalo milk group or group III (Dahi). The present study suggests that LaBb probiotic Dahi can be used to combat DSS-induced biochemical and histological changes and to achieve more effective treatment for ulcerative colitis.  相似文献   

18.
BackgroundPatients with inflammatory bowel disease are at increased risks of developing ulcerative colitis-associated colorectal cancer (CAC). Vitexin can suppress the proliferation of colorectal carcinoma cells in vitro orin vivo. However, different from colorectal carcinoma, CAC is more consistent with the transformation from inflammation to cancer in clinical chronic IBD patients. Therefore, we aim to investigated that vitexin whether possess benefic effects on CAC mice.PurposeWe aimed to determine the beneficial effects of vitexin on CAC mice and reveal its underlying mechanism.MethodsThe mouse CAC model was induced by Azoxymethane and dextran sodium sulfate (AOM/DSS) and CAC mice were treated with vitexin. At the end of this study, inflammatory cytokines of IL-1β, IL-6, TNF-α, IL-10 as well as nitric oxide (NO) were detected by kits after long-term treatment of vitexin. Pathological changes and macrophage polarization were determined by H&E and immunofluorescence in adjacent noncancerous tissue and carcinomatous tissue respectively of CAC mice.ResultsOur results showed that oral administration of vitexin could significantly improve the clinical signs and symptoms of chronic colitis, relieve colon damage, regulate colonic inflammatory cytokines, as well as suppress tumor incidence and tumor burden. Interesting, vitexin caused a significant increase in serum level of NO and a higher content of NO in tumor tissue. In addition, vitexin significantly decreased M1 phenotype macrophages in the adjacent noncancerous tissue, while markedly up-regulated M1 macrophage polarization in the tumor tissue in the colon of CAC mice.ConclusionVitexin can attenuate chronic colitis-associated carcinogenesis induced by AOM/DSS in mice and its protective effects are partly associated with its alternations in macrophage polarization in the inflammatory and tumor microenvironment .  相似文献   

19.
BackgroundUlcerative colitis is a subtype of inflammatory bowel disease, characterized by relapsing inflammation in the gastrointestinal tract with limited treatment options. Previous studies suggested that the natural compound tricin, a flavone isolated from rice bran, could suppress chemically-induced colitis in mice, while our recent study also demonstrated the anti-metastatic effect of tricin in colon tumor-bearing mice.Hypothesis/PurposeHere we further investigated the underlying mechanism of the inhibitory effects of tricin on lipopolysaccharides-activated macrophage RAW264.7 cells and explored the efficacy of tricin in acute colitis mouse model induced by 4.5% dextran sulfate sodium (DSS) for 7 days.MethodsTricin (75, 100, and 150 mg/kg) or the positive control drug sulfasalazine (200 mg/kg) were orally administered to mice for 7 days. Stool consistency scores, stool blood scores, and body weight were recorded daily. Disease activity index (DAI) was examined on day 7, and colon tissues were collected for biochemical analyses. The fecal microbiome of colitis mice after tricin treatment was characterized for the first time in this study using 16S rDNA amplicon sequencing.ResultsResults showed that tricin (50 µM) remarkably reduced nitric oxide production in lipopolysaccharides-activated RAW264.7 cells and the anti-inflammatory activity of tricin was shown to act through the NF-κB pathway. Besides, tricin treatment at 150 mg/kg significantly reversed colon length reduction, reduced myeloperoxidase activities and DAI scores, as well as restored the elevated myeloid-derived suppressive cells population in acute colitis mice. The influence from DSS on gut microbiota, such as the increased population of Proteobacteria phylum and Ruminococcaceae family, was shown to be relieved after tricin treatment.ConclusionOur present study firstly demonstrated that tricin ameliorated acute colitis by improving colonic inflammation and modulating gut microbiota profile, which supports the potential therapeutic use of tricin for colitis treatment.  相似文献   

20.
Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) observed over the experimental period, as well as by the other parameters, including colon lengths, hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 with exacerbation in DAI and histological scores. We first observed a significant decrease in colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 expressions in colonic tissues with clinical and histological improvements at day 7. These results suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号