首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that black and green tea extracts, particularly polyphenols, have antimicrobial activity against various pathogenic microbes including viruses. However, there is limited data on the antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which emerged rapidly in China in late 2019 and which has been responsible for coronavirus disease 2019 (COVID-19) pandemic globally. In this study, 20 compounds and three extracts were obtained from black and green tea and found that three tea extracts showed significant antiviral activity against SARS-CoV-2, whereby the viral titre decreased about 5 logs TCID50 per ml by 1·375 mg ml−1 black tea extract and two-fold diluted tea bag infusion obtained from black tea when incubated at 25°C for 10 s. However, when concentrations of black and green tea extracts were equally adjusted to 344 µg ml−1, green tea extracts showed more antiviral activity against SARS-CoV-2. This simple and highly respected beverage may be a cheap and widely acceptable means to reduce SARS-CoV-2 viral burden in the mouth and upper gastrointestinal and respiratory tracts in developed as well as developing countries.  相似文献   

2.
SARS-CoV-2 is a betacoronavirus with a linear single-stranded, positive-sense RNA genome, whose outbreak caused the ongoing COVID-19 pandemic. The ability of coronaviruses to rapidly evolve, adapt, and cross species barriers makes the development of effective and durable therapeutic strategies a challenging and urgent need. As for other RNA viruses, genomic RNA structures are expected to play crucial roles in several steps of the coronavirus replication cycle. Despite this, only a handful of functionally-conserved coronavirus structural RNA elements have been identified to date. Here, we performed RNA structure probing to obtain single-base resolution secondary structure maps of the full SARS-CoV-2 coronavirus genome both in vitro and in living infected cells. Probing data recapitulate the previously described coronavirus RNA elements (5′ UTR and s2m), and reveal new structures. Of these, ∼10.2% show significant covariation among SARS-CoV-2 and other coronaviruses, hinting at their functionally-conserved role. Secondary structure-restrained 3D modeling of these segments further allowed for the identification of putative druggable pockets. In addition, we identify a set of single-stranded segments in vivo, showing high sequence conservation, suitable for the development of antisense oligonucleotide therapeutics. Collectively, our work lays the foundation for the development of innovative RNA-targeted therapeutic strategies to fight SARS-related infections.  相似文献   

3.
Yen GC  Ju JW  Wu CH 《Free radical research》2004,38(2):193-200
The protective effects of three tea extracts (green tea, GTE; oolong tea, OTE; and black tea, BTE) and five tea polyphenols (epicatechin, EC; epicatechin gallate, ECG; epigallocatechin, EGC; epigallocatechin gallate, EGCG; and theaflavins, THFs) on benzo[a]pyrene (B[a]P)-induced DNA damage in Chang liver cells were evaluated using the comet assay. B[a]P-induced DNA damage in Chang liver cells was significantly (p < 0.05) inhibited by GTE and OTE at a concentration of 10 microg/ml and by BTE at 25 microg/ml. At a concentration of 100 microg/ml, the % tail DNA was reduced from 33% (B[a]P treated only) to 10, 9, 13%, by GTE, OTE and BTE, respectively. EC and ECG did not cause DNA damage in cells according to the results of the comet assay; however, EGC, EGCG and theaflavins caused DNA damage in cells at a concentration of 100 microM. The results indicated that EC and ECG had protective effects against B[a]P-induced DNA damage in cells at a concentration of 10-100 microM. Although EGC, EGCG and the theaflavins caused DNA damage at a high concentration, but they had protective effects against B[a]P-induced DNA damage in cells at a low concentration of 10-50 microM. The results also showed that the DNA damage in cells induced by EGC, EGCG, and the theaflavins was due to the generation of superoxide during incubation with cells at a higher concentration. Therefore, tea catechins and THFs play an important role in enabling tea extracts to inhibit DNA damage in Chang liver cells.  相似文献   

4.
Tea is the most popular beverage, consumed by over two thirds of the world's population. Tea is processed differently in different parts of the world to give green (20%), black (78%) or oolong tea (2%). Green tea is consumed mostly in Japan and China. The antimutagenic and anticarcinogenic activities of green tea are extensively examined. The chemical components of green and black tea are polyphenols, which include EC, ECG, EGC, EGCG and TFs. This article reviews the epidemiological and experimental studies on the antimutagenicity and anticarcinogenicity of tea extracts and tea polyphenols. In Japan, an epidemiological study showed an inverse relationship between habitual green tea drinking and the standardized mortality rates for cancer. Some cohort studies on Chanoyu (Japanese tea ceremony) women teachers also showed that their mortality ratio including deaths caused by malignant neoplasms were surprisingly low. The antimutagenic activity against various mutagens of tea extracts and polyphenols including ECG and EGCG has been demonstrated in microbial systems (Salmonella typhimurium and Escherichia coli), mammalian cell systems and in vivo animal tests. The anticarcinogenic activity of tea phenols has been shown in experimental animals such as rats and mice, in transplantable tumors, carcinogen-induced tumors in digestive organs, mammary glands, hepatocarcinomas, lung cancers, skin tumors, leukemia, tumor promotion and metastasis. The mechanisms of antimutagenesis and anticarcinogenesis of tea polyphenols suggest that the inhibition of tumors may be due to both extracellular and intracellular mechanisms including the modulation of metabolism, blocking or suppression, modulation of DNA replication and repair effects, promotion, inhibition of invasion and metastasis, and induction of novel mechanisms.  相似文献   

5.
The phenolic composition and antioxidant activities [TEAC, ORAC, FRAP] of consumer brews (1 tea bag in 230 ml for 1 min) of seven different brands of black tea from the British market were investigated. The main phenolic compounds identified were epigallocatechin gallate, four theaflavins, as well as epicatechin gallate, theogallin (tentative assignment), quercetin-3-rutinoside and 4-caffeoyl quinic acid. Thearubigins represented an estimated 75-82% of the total phenolics. Further, polyphenol fractions were in decreasing order theaflavins, flavan-3-ols, flavonols, gallic acids and hydroxycinnamates. On average, a cup of a consumer brew of black tea is providing polyphenols at the level of 262 mg GAE/serving, of which 65 mg were assigned to individual polyphenols. The antioxidant activity of black tea preparations is higher than that of most reported dietary agents on a daily basis. Correlations were observed between the antioxidant activities and the sum of all quantified polyphenols by HPLC analysis as well as with the total phenolics. Treatment of the black tea brew with simulated gastric juice resulted in a significant increase of the identified theaflavins implying a partial cleavage of thearubigins in the environment of the gastric lumen. Therefore, black tea can be considered to be a rich source of polyphenols and/or antioxidants.  相似文献   

6.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.  相似文献   

7.
Tea is one of the most widely consumed beverages, second only to water. Many experimental researches in laboratory animals demonstrated that tea components had an inhibitory effect on carcinogenesis at a number of organ sites. The inhibitory effects of tea against carcinogenesis have been attributed to the biologic activities of the polyphenol fraction in tea. This review summarizes experimental data on chemopreventive effects of tea polyphenols in various tumor bioassay systems. Many laboratory studies have demonstrated the inhibitory effects of green tea polyphenols, especially (-)-epigallocatechin-3-gallate (EGCG), on carcinogenesis in animals models. The majority of these studies have been conducted in mouse skin tumor models, where tea polyphenols were used either as oral feeding in drinking water or in direct local application. Most studies used 12-O-tetradecanoylphorbol-13-acetate (TPA) or ultraviolet (UV) radiation as the tumor promoter and found anticarcinogenic effects caused by green tea polyphenols. Black tea was also found to be effective, although the activity was weaker than that of green tea in some experiments. Other studies showed that black tea polyphenols-theaflavins exhibited stronger anticarcinogenic activity than did EGCG. Caffeine in tea was also important for tea to prevent tumorigenesis. The molecular mechanisms of the cancer chemopreventive effects of tea polyphenols are not completely understood. They are most likely related to the mechanisms of biochemical actions of tea polyphenols, which include antioxidative activities, modulation of xenobiotic metabolite enzymes and inhibition of tumor promotion. In addition, we have also proposed that tea polyphenols function as cancer chemopreventive agents through modulation of mitotic signal transduction. However, the molecular mechanisms involved in this modulation need further investigation.  相似文献   

8.
SARS-CoV-2 is a positive-sense RNA virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, which continues to cause significant morbidity, mortality and economic strain. SARS-CoV-2 can cause severe respiratory disease and death in humans, highlighting the need for effective antiviral therapies. The RNA synthesis machinery of SARS-CoV-2 is an ideal drug target and consists of non-structural protein 12 (nsp12), which is directly responsible for RNA synthesis, and numerous co-factors involved in RNA proofreading and 5′ capping of viral RNAs. The formation of the 5′ 7-methylguanosine (m7G) cap structure is known to require a guanylyltransferase (GTase) as well as a 5′ triphosphatase and methyltransferases; however, the mechanism of SARS-CoV-2 RNA capping remains poorly understood. Here we find that SARS-CoV-2 nsp12 is involved in viral RNA capping as a GTase, carrying out the addition of a GTP nucleotide to the 5′ end of viral RNA via a 5′ to 5′ triphosphate linkage. We further show that the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase) domain performs this reaction, and can be inhibited by remdesivir triphosphate, the active form of the antiviral drug remdesivir. These findings improve understanding of coronavirus RNA synthesis and highlight a new target for novel or repurposed antiviral drugs against SARS-CoV-2.  相似文献   

9.
【背景】新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)在全球流行已近3年,除对人类造成了巨大伤害,也影响了人类的伴侣动物。人的COVID-19疫苗已在全球应用,但动物用的新冠病毒疫苗却鲜有报道。【目的】研制兽用新冠病毒(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)和狂犬病病毒(rabies virus,RABV)的二联苗。【方法】将合成的SARS-CoV-2 S基因和S1基因分别克隆至RABV弱毒疫苗株rHEP-Flury基因组GL基因间,并将2个重组质粒分别与辅助质粒共转染至BHK-21细胞中,拯救重组病毒rHEP-nCOV-S和rHEP-nCOV-S1。通过RT-PCR、Western blotting和荧光抗体染色,验证重组病毒、确证S和S1蛋白在RABV中成功表达。再将重组病毒接种NA细胞及成年小白鼠,测定病毒的体外生长特性、重组病毒的致病性及免疫原性。【结果】免疫荧光结果显示,转染7d后细胞上清均出现了绿色免疫荧光,表明已成功拯救嵌合SARS-CoV-2SS1基因的重组病毒RABV rHEP-nCOV-S和rHEP-nCOV-S1,并且rHEP-nCOV-S1的增殖和扩散能力强于亲本株rHEP-Flury,但rHEP-nCOV-S与亲本株无显著差异。Western blotting结果显示,在目的位置处均出现72kDa和144kDa特异性条带,表明S和S1蛋白在重组RABV中高效表达。重组病毒免疫6周KM小鼠后,小鼠的体重变化与亲本RABV基本一致,重组病毒诱导小鼠产生狂犬中和抗体。【结论】本研究拯救出了嵌合SARS-CoV-2 S/S1基因的重组RABV,为动物COVID-19载体疫苗的研发奠定了基础。  相似文献   

10.
The ongoing pandemic of coronavirus disease 2019 (COVID-19) has reshaped our daily life and caused > 4 million deaths worldwide (https://covid19.who.int/). Although lockdown and vaccination have improved the situation in many countries, imported cases and sporadic outbreaks pose a constant stress to the prevention and control of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent responsible for COVID-19, has a positive-sense single-stranded RNA genome of 30 kb (Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, 2020). We and other groups have demonstrated that the SARS-CoV-2 could use the angiotensin-converting enzyme 2 (ACE2) as cell receptor, including orthologs of a broad range of animal species such as human, bats, ferrets, pigs, cats, and dogs (Hoffmann et al., 2020; Zhou et al., 2020; Liu et al., 2021). Although the evolutionary origin of SARS-CoV-2 can be linked to the discoveries of diverse coronaviruses related to SARS-CoV-2 in wild animals such as bats (Zhou et al., 2020; Wacharapluesadee et al., 2021) and pangolins (Liu et al., 2019; Lam et al., 2020), the direct origin of SARS-CoV-2 in humans remains unknown. In China, several sporadic outbreaks of COVID-19 in 2020 were linked to food in cold chain sold at trade markets, including salmon meat (http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml) (Yang et al., 2020). The detection of SARS-CoV-2 RNA on the surface of frozen meat for as long as 20 days has also been reported (Feng et al., 2021). A concern regarding the potential role of fish in SARS-CoV-2 transmission has also been raised. Therefore, we investigated the susceptibility of fish ACE2 to SARS-CoV-2.  相似文献   

11.
The polyphenolic dimers, epicatechin-4beta-8-catechin (B1), epicatechin-4beta-8-epicatechin (B2), catechin-4beta-8-catechin (B3), catechin-4beta-8-epicatechin (B4), and the gallate ester epicatechin-4beta-8-epicatechin gallate (B'2G) were isolated from grape seeds, and theaflavins and theafulvins from black tea brews. The ability of these naturally-occurring polyphenols to afford protection against the genotoxicity of the heterocyclic amine 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) was compared with that of the monomeric tea flavanols, (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG). Genotoxic activity was evaluated in human peripheral lymphocytes using the Comet assay. At the concentration range of 1-100 microM, neither the monomeric nor the dimeric flavanols prevented the lymphocyte DNA damage induced by Trp-P-2. In contrast, both of the black tea polyphenols, theafulvins and theaflavins, at a dose range of 0.1-0.5 mg/ml, prevented, in a concentration-dependent manner, the DNA damage elicited by Trp-P-2. Finally, neither the monomeric and dimeric polyphenols (100 microM) nor the theafulvins and theaflavins (0.5mg/ml) caused any DNA damage in the human lymphocytes. These studies illustrate that black tea theafulvins and theaflavins, if absorbed intact, may contribute to the anticarcinogenic potential associated with black tea intake.  相似文献   

12.
A dipping method was developed to extract the catechins (EGCG) and alkaloids (caffeine) from green tea (Korea) and black tea (Sri Lanka). The effects of the solvent composition (water vs. ethanol), extraction time, temperatures, and solvent pH on the amount of catechins (EGCG) and alkaloids (caffeine) extracted from green and black tea were investigated. Reversedphase high-performance liquid chromatography (RP-HPLC) was used to analyze the catechins (EGCG) and alkaloids (caffeine) extracted. The content of EGCG and caffeine in green tea extracts was in the range of 2.04∼0.30 and 10.22∼0.85 mg/g, respectively. The amount of EGCG and caffeine in black tea extracts was in the range of 0.32∼0.24 and 5.26∼1.01 mg/g, respectively. The amount of caffeine extracted from green and black tea was greater than the amount of EGCG. Pure water is the best solvent for extracting EGCG and caffeine from green tea. The amount of caffeine extracted from green and black tea increased as the temperature, extraction time, and hydrogen ion concentration of the solvent increased. Although the amount of EGCG extracted from green tea increased as the temperature increased, the amount of EGCG extracted from black tea was not affected by temperature. The extraction of EGCG from both green and black tea was not affected by the hydrogen ion concentration of the solvent.  相似文献   

13.
Cancer therapy and prevention by green tea: role of ornithine decarboxylase   总被引:10,自引:0,他引:10  
Summary. Green tea which is widely consumed in China, Japan and India, contains polyphenolic compounds, which account for 30% of the dry weight of the leaves. Most of the polyphenols are flavanols, of which (−)-epigallocatechin-3-gallate (EGCG) is most abundant. Epidemiological studies revealed that the incidences of stomach and prostate cancers are the lowest in the world among a population that consumes green tea on a regular basis. It has also been reported that the quantity of green tea consumed, plays an important role in reducing cancer risk and in delaying cancer outbreak and recurrence. Various systems were used to confirm anti-cancer activities of green tea and/or EGCG. These included experimental animals in which cancer was induced chemically. Cultured cells transformed chemically or by oncogenes were also used. These studies clearly demonstrated that green tea or EGCG have anticancer and cancer preventive properties. The mechanisms of these activities have also been studied in details. It has been shown that green tea and its active components interfere with signal transduction pathways. Thus the activities of various protein kinases are inhibited, the expression of nuclear proto-oncogenes declines and the activity of ornithine decarboxylase (ODC) is reduced. ODC, which catalyzes the rate-limiting step in the biosynthesis of polyamines is closely linked with cellular proliferation and carcinogenesis. Inhibitors of ODC, like α-difluoromethylornithine (DFMO) have long been used for cancer prevention and therapy. It has been suggested that polyamine depletion by green tea could offer one explanation for its anti-cancer activities. Received July 27, 2001 Accepted September 8, 2001  相似文献   

14.
15.
Tracking evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within infected individuals will help elucidate coronavirus disease 2019 (COVID-19) pathogenesis and inform use of antiviral interventions. In this study, we developed an approach for sequencing the region encoding the SARS-CoV-2 virion surface proteins from large numbers of individual virus RNA genomes per sample. We applied this approach to the WA-1 reference clinical isolate of SARS-CoV-2 passaged in vitro and to upper respiratory samples from 7 study participants with COVID-19. SARS-CoV-2 genomes from cell culture were diverse, including 18 haplotypes with non-synonymous mutations clustered in the spike NH2-terminal domain (NTD) and furin cleavage site regions. By contrast, cross-sectional analysis of samples from participants with COVID-19 showed fewer virus variants, without structural clustering of mutations. However, longitudinal analysis in one individual revealed 4 virus haplotypes bearing 3 independent mutations in a spike NTD epitope targeted by autologous antibodies. These mutations arose coincident with a 6.2-fold rise in serum binding to spike and a transient increase in virus burden. We conclude that SARS-CoV-2 exhibits a capacity for rapid genetic adaptation that becomes detectable in vivo with the onset of humoral immunity, with the potential to contribute to delayed virologic clearance in the acute setting.  相似文献   

16.
BackgroundSARS-CoV-2, an emerging strain of coronavirus, has affected millions of people from all the continents of world and received worldwide attention. This emerging health crisis calls for the urgent development of specific therapeutics against COVID-19 to potentially reduce the burden of this emerging pandemic.PurposeThis study aims to evaluate the anti-viral efficacy of natural bioactive entities against COVID-19 via molecular docking and molecular dynamics simulation.MethodsA library of 27 caffeic-acid derivatives was screened against 5 proteins of SARS-CoV-2 by using Molegro Virtual Docker 7 to obtain the binding energies and interactions between compounds and SARS-CoV-2 proteins. ADME properties and toxicity profiles were investigated via www.swissadme.ch web tools and Toxtree respectively. Molecular dynamics simulation was performed to determine the stability of the lead-protein interactions.ResultsOur obtained results has uncovered khainaoside C, 6-O-Caffeoylarbutin, khainaoside B, khainaoside C and vitexfolin A as potent modulators of COVID-19 possessing more binding energies than nelfinavir against COVID-19 Mpro, Nsp15, SARS-CoV-2 spike S2 subunit, spike open state and closed state structure respectively. While Calceolarioside B was identified as pan inhibitor, showing strong molecular interactions with all proteins except SARS-CoV-2 spike glycoprotein closed state. The results are supported by 20 ns molecular dynamics simulations of the best complexes.ConclusionThis study will hopefully pave a way for development of phytonutrients-based antiviral therapeutic for treatment or prevention of COVID-19 and further studies are recommended to evaluate the antiviral effects of these phytochemicals against SARS-CoV-2 in in vitro and in vivo models.  相似文献   

17.
BackgroundThe outbreak of coronavirus (SARS-CoV-2) disease caused more than 100,000,000 people get infected and over 2,200,000 people being killed worldwide. However, the current developed vaccines or drugs may be not effective in preventing the pandemic of COVID-19 due to the mutations of coronavirus and the severe side effects of the newly developed vaccines. Chinese herbal medicines and their active components play important antiviral activities. Corilagin exhibited antiviral effect on human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Epstein-Barr virus (EBV). However, whether it blocks the interaction between SARS-CoV-2 RBD and hACE2 has not been elucidated.PurposeTo characterize an active compound, corilagin derived from Phyllanthus urinaria as potential SARS-CoV-2 entry inhibitors for its possible preventive application in daily anti-virus hygienic products.MethodsComputational docking coupled with bio-layer interferometry, BLI were adopted to screen more than 1800 natural compounds for the identification of SARS-CoV-2 spike-RBD inhibitors. Corilagin was confirmed to have a strong binding affinity with SARS-CoV-2-RBD or human ACE2 (hACE2) protein by the BLI, ELISA and immunocytochemistry (ICC) assay. Furthermore, the inhibitory effect of viral infection of corilagin was assessed by in vitro pseudovirus system. Finally, the toxicity of corilagin was examined by using MTT assay and maximal tolerated dose (MTD) studies in C57BL/6 mice.ResultsCorilagin preferentially binds to a pocket that contains residues Cys 336 to Phe 374 of spike-RBD with a relatively low binding energy of -9.4 kcal/mol. BLI assay further confirmed that corilagin exhibits a relatively strong binding affinity to SARS-CoV-2-RBD and hACE2 protein. In addition, corilagin dose-dependently blocks SARS-CoV-2-RBD binding and abolishes the infectious property of RBD-pseudotyped lentivirus in hACE2 overexpressing HEK293 cells, which mimicked the entry of SARS-CoV-2 virus in human host cells. Finally, in vivo studies revealed that up to 300 mg/kg/day of corilagin was safe in C57BL/6 mice. Our findings suggest that corilagin could be a safe and potential antiviral agent against the COVID-19 acting through the blockade of the fusion of SARS-CoV-2 spike-RBD to hACE2 receptors.ConclusionCorilagin could be considered as a safe and environmental friendly anti-SARS-CoV-2 agent for its potential preventive application in daily anti-virus hygienic products.  相似文献   

18.
We investigated the phagocytosis-enhancing activity of green tea polyphenols, such as epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) catechin (+C) and strictinin, using VD3-differentiated HL60 cells. EGCG, EGC, ECG and strictinin, but not EC and +C, increased the phagocytic activity of macrophage-like cells, and a caspase inhibitor significantly inhibited phagocytic activities. These results suggest that the pyrogallol-type structure in green tea polyphenols may be important for enhancement of the phagocytic activity through caspase signaling pathways.  相似文献   

19.
We have earlier shown that oral infusion of a polyphenolic fraction isolated from green tea, at a human achievable dose (equivalent to six cups of green tea per day), significantly inhibits prostate cancer (PCA) development and metastasis in transgenic adenocarcinoma of mouse prostate (TRAMP) model that closely mimics progressive form of human prostatic disease (Gupta et al. [2001]: Proc. Natl. Acad. Sci. U.S.A. 98:10350-10355.). A complete understanding of the mechanism(s) and molecular targets of PCA chemopreventive effects of tea polyphenols may be useful in developing novel approaches for its prevention. In this study, we employed two distinct human PCA cell lines viz. DU145 (androgen-unresponsive prostate carcinoma cells) and LNCaP (androgen-responsive prostate carcinoma cells) and, employing immunoblot analysis, we evaluated the effect of epigallocatechin-3-gallate (EGCG), the major polyphenol present in green tea and theaflavins (TF), the major polyphenol present in black tea on phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB) and mitogen-activated protein kinase (MAPK) pathways. Both EGCG and TF treatment were found to (i) decrease the levels of PI3K and phospho-Akt and (ii) increase Erk1/2 in both DU145 and LNCaP cells. Our data showing the inhibition of the constitutive levels of PI3K and the phosphorylation of Akt could be important because the treatment approaches should be aimed at the inhibition of the constitutive levels of PI3K and Akt. Our data also suggest that Erk1/2 could be involved in the anti-cancer effects of EGCG and TF. Taken together, our study, for the first time demonstrated the modulation of the constitutive activation of PI3K/Akt and Erk1/2 pathways by EGCG as well as TF. We suggest that detailed studies in appropriate tumor model system are needed to establish the relevance of the cell culture work to in vivo models.  相似文献   

20.
Tea is the most popular beverage next to water, consumed by over two-thirds of the world's population. It is processed in different ways in different parts of the world to give green, black or oolong tea. Experimental studies have demonstrated the significant antimutagenic and anticlastogenic effects of both green and black tea and its polyphenols in multiple mutational assays. In the present review, we have attempted to evaluate and update the comparative antimutagenic and anticlastogenic effects of green tea, black tea and their polyphenols in different test systems, based on available literature. Existing reports have suggested that the protective effects of black tea is as good as green tea, however, more studies on black tea and its polyphenols are needed before a final conclusion can be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号