首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Network inference deals with the reconstruction of molecular networks from experimental data. Given N molecular species, the challenge is to find the underlying network. Due to data limitations, this typically is an ill-posed problem, and requires the integration of prior biological knowledge or strong regularization. We here focus on the situation when time-resolved measurements of a system’s response after systematic perturbations are available.

Results

We present a novel method to infer signaling networks from time-course perturbation data. We utilize dynamic Bayesian networks with probabilistic Boolean threshold functions to describe protein activation. The model posterior distribution is analyzed using evolutionary MCMC sampling and subsequent clustering, resulting in probability distributions over alternative networks. We evaluate our method on simulated data, and study its performance with respect to data set size and levels of noise. We then use our method to study EGF-mediated signaling in the ERBB pathway.

Conclusions

Dynamic Probabilistic Threshold Networks is a new method to infer signaling networks from time-series perturbation data. It exploits the dynamic response of a system after external perturbation for network reconstruction. On simulated data, we show that the approach outperforms current state of the art methods. On the ERBB data, our approach recovers a significant fraction of the known interactions, and predicts novel mechanisms in the ERBB pathway.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-250) contains supplementary material, which is available to authorized users.  相似文献   

2.
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.  相似文献   

3.
The First joint meeting of the German DGDR (German Society for Research on DNA Repair) and the French SFTG (French Society of Genotoxicology) on DNA Repair was held in Toulouse, France, from September 15 to 19, 2007. It was organized by Lisa Wiesmüller and Bernard Salles together with the scientific committee consisting of Gilbert de Murcia, Jean-Marc Egly, Frank Grosse, Karl-Peter Hopfner, Georges Iliakis, Bernd Kaina, Markus Löbrich, Bernard Lopez, Daniel Marzin and Alain Sarasin. This report summarizes information presented by the speakers (invited lectures and oral communications) during the seven plenary sessions, which include (1) excision repair, (2) DNA repair and carcinogenesis, (3) double-strand break repair, (4) replication in repair and lesion bypass, (5) cellular responses to genotoxic stress, (6) DNA repair machinery within the chromatin context and (7) genotoxicology and testing. A total of 23 plenary lectures, 32 oral communications and 66 posters were presented in this rather intense 4 days meeting, which stimulated extensive discussions and highly interdisciplinary scientific exchanges among the ∼250 participants.  相似文献   

4.
5.
6.
Evidence has been accumulating that nuclear lipid metabolism is involved in the regulation of nuclear functions. Here I describe an autonomous nuclear lipid signaling that has been found to be associated with the metabolism of such lipids as phosphoinositides, choline phospholipids, and the acylation and deacylation cycle. Some lipid signals from the plasma membrane ultimately reach the nucleus and regulate the nuclear function. In this case, however, generated lipids and their metabolites may not directly act on the nuclear factors involved in nuclear function. The unique and direct effects of nuclear lipids and their metabolites on nuclear factors are also discussed.  相似文献   

7.
8.
9.
Cells signal through lipids that are produced by phospholipid (PL) and phosphoinositide (PIPn) metabolism involve three enzymatic processes: (i) ester and phosphodiester hydrolysis by phospholipases, (ii) monophosphate hydrolysis by phosphatases, and (iii) phosphorylation of hydroxy groups by kinases. Unregulated enzyme activity correlates with specific pathologies, which are specific targets for therapeutic intervention. A variety of reagents now permit monitoring of in vitro enzyme activity, spatiotemporal changes of intracellular lipid concentrations, and identification of lipid-protein interactions. This minireview summarizes a chemical biology approach that illustrates how chemically synthesized affinity probes can be used to characterize changes in lipid signaling in cellular and molecular biology.  相似文献   

10.
11.
Nuclear sphingolipids: metabolism and signaling   总被引:1,自引:0,他引:1  
Sphingolipids are most prominently expressed in the plasma membrane, but recent studies have pointed to important signaling and regulatory roles in the nucleus. The most abundant nuclear sphingolipid is sphingomyelin (SM), which occurs in the nuclear envelope (NE) as well as intranuclear sites. The major metabolic product of SM is ceramide, which is generated by nuclear sphingomyelinase and triggers apoptosis and other metabolic changes. Ceramide is further hydrolyzed to free fatty acid and sphingosine, the latter undergoing conversion to sphingosine phosphate by action of a specific nuclear kinase. Gangliosides are another type of sphingolipid found in the nucleus, members of the a-series of gangliotetraose gangliosides (GM1, GD1a) occurring in the NE and endonuclear compartments. GM1 in the inner membrane of the NE is tightly associated with a Na(+)/Ca(2+) exchanger whose activity it potentiates, thereby contributing to regulation of Ca(2+) homeostasis in the nucleus. This was shown to exert a cytoprotective role as absence or inactivation of this nuclear complex rendered cells vulnerable to apoptosis. This was demonstrated in the greatly enhanced kainite-induced seizure activity in knockout mice lacking gangliotetraose gangliosides. The pathology included apoptotic destruction of neurons in the CA3 region of the hippocampus. Ca(2+) homeostasis was restored in these animals with LIGA-20, a membrane-permeant derivative of GM1 that entered the NE and activated the nuclear Na(+)/Ca(2+) exchanger. Some evidence suggests the presence of uncharged glycosphingolipids in the nucleus.  相似文献   

12.
Neurons transmit long-range biochemical signals between cell bodies and distant axonal sites or termini. To test the hypothesis that signaling molecules are hitchhikers on axonal vesicles, we focused on the c-Jun NH2-terminal kinase (JNK) scaffolding protein Sunday Driver (syd), which has been proposed to link the molecular motor protein kinesin-1 to axonal vesicles. We found that syd and JNK3 are present on vesicular structures in axons, are transported in both the anterograde and retrograde axonal transport pathways, and interact with kinesin-I and the dynactin complex. Nerve injury induces local activation of JNK, primarily within axons, and activated JNK and syd are then transported primarily retrogradely. In axons, syd and activated JNK colocalize with p150Glued, a subunit of the dynactin complex, and with dynein. Finally, we found that injury induces an enhanced interaction between syd and dynactin. Thus, a mobile axonal JNK-syd complex may generate a transport-dependent axonal damage surveillance system.  相似文献   

13.
ATM signaling and genomic stability in response to DNA damage   总被引:16,自引:0,他引:16  
DNA double strand breaks represent the most threatening lesion to the integrity of the genome in cells exposed to ionizing radiation and radiomimetic chemicals. Those breaks are recognized, signaled to cell cycle checkpoints and repaired by protein complexes. The product of the gene (ATM) mutated in the human genetic disorder ataxia-telangiectasia (A-T) plays a central role in the recognition and signaling of DNA damage. ATM is one of an ever growing number of proteins which when mutated compromise the stability of the genome and predispose to tumour development. Mechanisms for recognising double strand breaks in DNA, maintaining genome stability and minimizing risk of cancer are discussed.  相似文献   

14.
Cells are constantly exposed to genotoxic events that can damage DNA. To counter this, cells have evolved a series of highly conserved DNA repair pathways to maintain genomic integrity. The ATM protein kinase is a master regulator of the DNA double-strand break (DSB) repair pathway. DSBs activate ATM’s kinase activity, promoting the phosphorylation of proteins involved in both checkpoint activation and DNA repair. Recent work has revealed that two DNA damage response proteins, the Tip60 acetyltransferase and the mre11-rad50-nbs1 (MRN) complex, co-operate in the activation of ATM in response to DSBs. MRN functions to target ATM and the Tip60 acetyltransferase to DSBs. Tip60’s chromodomain then interacts with histone H3 trimethylated on lysine 9, activating Tip60’s acetyltransferase activity and stimulating the subsequent acetylation and activation of ATM’s kinase activity. These results underscore the importance of chromatin structure in regulating DNA damage signaling and emphasize how histone modifications co-ordinate DNA repair. In addition, human tumors frequently exhibit altered patterns of histone methylation. This rewriting of the histone methylation code in tumor cells may impact the efficiency of DSB repair, increasing genomic instability and contributing to the initiation and progression of cancer.  相似文献   

15.
Nuclear trafficking of pro-apoptotic kinases in response to DNA damage   总被引:1,自引:0,他引:1  
The cellular response to genotoxic stress includes cell-cycle arrest, activation of DNA repair and induction of apoptosis. However, the signals that determine cell fate are largely unknown. Recent studies have shown that several pro-apoptotic kinases, including protein kinase C (PKC)delta, Abelson murine leukemia viral oncogene homolog 1 (c-Abl) and dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2), undergo nuclear-cytoplasmic shuttling in response to DNA damage. Importantly, whereas precise regulation for the shuttling of these kinases remains uncertain, this mechanism has consequences for induction of apoptosis and implies that proper localization is central to the function of pro-apoptotic kinases. This review highlights recent progress demonstrating that the nuclear targeting of kinases is a novel and essential regulatory mechanism that directly influences the induction of apoptosis in response to DNA damage. The potential implications for novel therapies are also discussed.  相似文献   

16.
The existence of an inositide-dependent nuclear signaling has been clearly shown. In this review we focused on the nuclear PI-PLC signaling activity and its downstream effects. The main isoform present in the nucleus is PI-PLC β1 and this isoform resides in the nuclear domains called speckles and colocalizes with the splicing factor SC35. PI-PLC β1 is also involved in the physiological control of the cell cycle. Moreover, acting on the cyclin D3 promoter plays a crucial role in the process of C2C12 myoblast differentiation. Finally in hematological malignancies such as high-risk MDS, the deletion of PI-PLC β1 gene has been observed. There is the likelihood that the deletion is a prognostic marker in that 66.7% MDS patients bearing the PI-PLC β1 monoallelic deletion evolved into AML. In addition the expression of nuclear PI-PLC β1 in MDS patients is modulated by the demethylating drug azacytidine. Therefore the analysis of nuclear PI-PLC-β1 appears useful for both MDS prognosis and checking of the epigenetic effect of antileukemic drugs.  相似文献   

17.
18.
Myelodysplastic syndromes (MDS) are defined as clonal hematopoietic stem‐cell disorders characterized by ineffective hematopoiesis in one or more of the lineages of the bone marrow. Although distinct morphologic subgroups exist, the natural history of MDS is progression to acute myeloid leukemia (AML). However, the molecular the mechanisms the underlying MDS evolution to AML are not completely understood. Inositides are key cellular second messengers with well‐established roles in signal transduction pathways, and nuclear metabolism elicited by phosphoinositide‐specific phospholipase C (PI‐PLC) β1 and Akt plays an important role in the control of the balance between cell cycle progression and apoptosis in both normal and pathologic conditions. Recent findings evidenced the role played by nuclear lipid signaling pathways, which could become promising therapeutic targets in MDS. This review will provide a concise and updated revision of the state of art on this topic. J. Cell. Biochem. 109: 1065–1071, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
Metazoans adapt to changing environmental conditions and to harmful challenges by attenuating growth and metabolic activities systemically. Recent studies in mice and flies indicate that endocrine signaling interactions between insulin/IGF signaling (IIS) and innate immune signaling pathways are critical for this adaptation, yet the temporal and spatial hierarchy of these signaling events remains elusive. Here, we identify and characterize a program of signaling interactions that regulates the systemic response of the Drosophila larva to localized DNA damage. We provide evidence that epidermal DNA damage induces an innate immune response that is kept in check by systemic repression of IIS activity. IIS repression induces NFκB/Relish signaling in the fat body, which is required for recovery of IIS activity in a second phase of the systemic response to DNA damage. This systemic response to localized DNA damage thus coordinates growth and metabolic activities across tissues, ensuring growth homeostasis and survival of the animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号