首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Maternal nutrition is critically involved in the development and health of the fetus. We evaluated maternal methyl-group donor intake through diet (methionine, betaine, choline, folate) and supplementation (folic acid) before and during pregnancy in relation to global DNA methylation and hydroxymethylation and gene specific (IGF2 DMR, DNMT1, LEP, RXRA) cord blood methylation. A total of 115 mother-infant pairs were enrolled in the MAternal Nutrition and Offspring's Epigenome (MANOE) study. The intake of methyl-group donors was assessed using a food-frequency questionnaire. LC-MS/MS and pyrosequencing were used to measure global and gene specific methylation, respectively. Dietary intake of methyl-groups before and during pregnancy was associated with changes in LEP, DNMT1, and RXRA cord blood methylation. Statistically significant higher cord blood LEP methylation was observed when mothers started folic acid supplementation more than 6 months before conception compared with 3–6 months before conception (34.6 ± 6.3% vs. 30.1 ± 3.6%, P = 0.011, LEP CpG1) or no folic acid used before conception (16.2 ± 4.4% vs. 13.9 ± 3%, P = 0.036 for LEP CpG3 and 24.5 ± 3.5% vs. 22.2 ± 3.5%, P = 0.045 for LEP mean CpG). Taking folic acid supplements during the entire pregnancy resulted in statistically significantly higher cord blood RXRA methylation as compared with stopping supplementation in the second trimester (12.3 ± 1.9% vs. 11.1 ± 2%, P = 0.008 for RXRA mean CpG). To conclude, long-term folic acid use before and during pregnancy was associated with higher LEP and RXRA cord blood methylation, respectively. To date, pregnant women are advised to take a folic acid supplement of 400 µg/day from 4 weeks before until 12 weeks of pregnancy. Our results suggest significant epigenetic modifications when taking a folic acid supplement beyond the current advice.  相似文献   

2.
Supplementation with folic acid during pregnancy is known to reduce the risk of neural tube defects and low birth weight. It is thought that folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. We examined the effects of folate on the human methylome using quantitative interrogation of 27,578 CpG loci associated with 14,496 genes at single-nucleotide resolution across 12 fetal cord blood samples. Consistent with previous studies, the majority of CpG dinucleotides located within CpG islands exhibited hypomethylation while those outside CpG islands showed mid-high methylation. However, for the first time in human samples, unbiased analysis of methylation across samples revealed a significant correlation of methylation patterns with plasma homocysteine, LINE-1 methylation and birth weight centile. Additionally, CpG methylation significantly correlated with either birth weight or LINE-1 methylation were predominantly located in CpG islands. These data indicate that levels of folate-associated intermediates in cord blood reflect their influence and consequences for the fetal epigenome and potentially on pregnancy outcome. In these cases, their influence might be exerted during late gestation or reflect those present during the peri-conceptual period.Key words: cord blood, birth weight, folic acid, homocysteine, BeadArray, hierarchical clustering, Illumina  相似文献   

3.
Neural tube defects (NTDs) are common birth defects of complex etiology. Though family- and population-based studies have confirmed a genetic component, the responsible genes for NTDs are still largely unknown. Based on the hypothesis that folic acid prevents NTDs by stimulating methylation reactions, epigenetic factors, such as DNA methylation, are predicted to be involved in NTDs. Homeobox (HOX) genes play a role in spinal cord development and are tightly regulated in a spatiotemporal and collinear manner, partly by epigenetic modifications. We have quantified DNA methylation for the different HOX genes by subtracting values from a genome-wide methylation analysis using leukocyte DNA from 10 myelomeningocele (MMC) patients and 6 healthy controls. From the 1575 CpGs profiled for the 4 HOX clusters, 26 CpGs were differentially methylated (P-value < 0.05; β-difference > 0.05) between MMC patients and controls. Seventy-seven percent of these CpGs were located in the HOXA and HOXB clusters, with the most profound difference for 3 CpGs within the HOXB7 gene body. A validation case-control study including 83 MMC patients and 30 unrelated healthy controls confirmed a significant association between MMC and HOXB7 hypomethylation (-14.4%; 95% CI: 11.9–16.9%; P-value < 0.0001) independent of the MTHFR 667C>T genotype. Significant HOXB7 hypomethylation was also present in 12 unaffected siblings, each related to a MMC patient, suggestive of an epigenetic change induced by the mother. The inclusion of a neural tube formation model using zebrafish showed that Hoxb7a overexpression but not depletion resulted in deformed body axes with dysmorphic neural tube formation. Our results implicate HOXB7 hypomethylation as risk factor for NTDs and highlight the importance for future genome-wide DNA methylation analyses without preselecting candidate pathways.  相似文献   

4.
Sperm DNA injury is one of the common causes of male infertility. Folic acid deficiency would increase the methylation level of the important genes, including those involved in DNA double‐strand break (DSB) repair pathway. In the early stages, we analysed the correlation between seminal plasma folic acid concentration and semen parameters in 157 infertility patients and 91 sperm donor volunteers, and found that there was a significant negative correlation between seminal folic acid concentration and sperm DNA Fragmentation Index (DFI; r = −0.495, p < 0.01). Then through reduced representation bisulphite sequencing, global DNA methylation of sperm of patients in the low folic acid group and the high folic acid group was analysed, it was found that the methylation level in Rad54 promoter region increased in the folic acid deficiency group compared with the normal folic acid group. Meanwhile, the results of animal model and spermatocyte line (GC‐2) also found that folic acid deficiency can increase the methylation level in Rad54 promoter region, increased sperm DFI in mice, increased the expression of γ‐H2AX, that is, DNA injury marker protein, and increased sensitivity of GC‐2 to external damage and stimulation. The study indicates that the expression of Rad54 is downregulated by folic acid deficiency via DNA methylation. This may be one of the mechanisms of sperm DNA damage caused by folate deficiency.  相似文献   

5.
A global loss of cytosine methylation in DNA has been implicated in a wide range of diseases. There is growing evidence that modifications in DNA methylation can be brought about by altering the intake of methyl donors such as folate. We examined whether long-term daily supplementation with 0.8 mg of folic acid would increase global DNA methylation compared with placebo in individuals with elevated plasma homocysteine. We also investigated if these effects were modified by MTHFR C677T genotype. Two hundred sixteen participants out of 818 subjects who had participated in a randomized double-blind placebo-controlled trial were selected, pre-stratified on MTHFR C677T genotype and matched on age and smoking status. They were allocated to receive either folic acid (0.8 mg/d; n = 105) or placebo treatment (n = 111) for three years. Peripheral blood leukocyte DNA methylation and serum and erythrocyte folate were assessed. Global DNA methylation was measured using liquid chromatography-tandem mass spectrometry and expressed as a percentage of 5-methylcytosines versus the total number of cytosine. There was no difference in global DNA methylation between those randomized to folic acid and those in the placebo group (difference = 0.008, 95%CI = -0.05,0.07, P = 0.79). There was also no difference between treatment groups when we stratified for MTHFR C677T genotype (CC, n = 76; CT, n = 70; TT, n = 70), baseline erythrocyte folate status or baseline DNA methylation levels. In moderately hyperhomocysteinemic men and women, long-term folic acid supplementation does not increase global DNA methylation in peripheral blood leukocytes.ClinicalTrials.gov NCT00110604.  相似文献   

6.
Folate, one of the most studied dietary compounds, has recently become the main topic of debates on food fortification. Although low folate levels may be associated with increased risk of cancer development, simultaneously several reports indicate a detrimental effects mediated by high folate concentrations. Using the methylation sensitive restriction analysis (MSRA) and real-time RT-PCR we tested the effect of folic acid on DNA promoter methylation and expression of PTEN, APC and RARbeta2 tumour suppressor genes in MCF-7 and MDA-MB-231 breast cancer cell lines with different invasive capacity. The tested genes encode proteins involved in regulation of oncogenic intracellular signaling pathways. The results show that the increasing concentrations of folic acid lead to a dose-dependent down-regulation of tumour suppressor genes which may be linked to the increased DNA methylation detected within their promoter regions. The effects were more remarkable in non-invasive MCF-7 cells where we also observed 30% up-regulation of DNMT1 expression at the highest folate concentration used. Our findings show that caution need to be used when introducing folic acid supplementation since it may lead to cancer progression.  相似文献   

7.
8.
9.
《Epigenetics》2013,8(7):689-694
The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.  相似文献   

10.
Betaine is reported to regulate hepatic cholesterol metabolism in mammals. Chicken eggs contain considerable amount of betaine, yet it remains unknown whether and how betaine in the egg affects hepatic cholesterol metabolism in chicks. In this study, eggs were injected with betaine at 2.5 mg/egg and the hepatic cholesterol metabolism was investigated in newly hatched chicks. Betaine did not affect body weight or liver weight, but significantly increased the serum concentration (P < 0.05) and the hepatic content (P < 0.01) of cholesterol. Accordingly, the cholesterol biosynthetic enzyme HMGCR was up-regulated (P < 0.05 for both mRNA and protein), while CYP7A1 which converts cholesterol to bile acids was down-regulated (P < 0.05 for mRNA and P = 0.07 for protein). Moreover, hepatic protein content of the sterol-regulatory element binding protein 1 which regulates cholesterol and lipid biosynthesis, and the mRNA abundance of ATP binding cassette sub-family A member 1 (ABCA1) which mediates cholesterol counter transport were significantly (P < 0.05) increased in betaine-treated chicks. Meanwhile, hepatic protein contents of DNA methyltransferases 1 and adenosylhomocysteinase-like 1 were increased (P < 0.05), which was associated with global genomic DNA hypermethylation (P < 0.05) and diminished gene repression mark histone H3 lysine 27 trimethylation (P < 0.05). Furthermore, CpG methylation level on gene promoters was found to be increased (P < 0.05) for CYP7A1 yet decreased (P < 0.05) for ABCA1. These results indicate that in ovo betaine injection regulates hepatic cholesterol metabolism in chicks through epigenetic mechanisms including DNA and histone methylations.  相似文献   

11.
Folate is a source of one-carbons necessary for DNA methylation, a critical epigenetic modification necessary for genomic structure and function. The use of supplemental folic acid is widespread however; the potential influence on DNA methylation is unclear. We measured global DNA methylation using DNA extracted from samples from a population-based, double-blind randomized trial of folic acid supplementation (100, 400, 4000 μg per day) taken for 6 months; including a 3 month post-supplementation sample. We observed no changes in global DNA methylation in response to up to 4,000 μg/day for 6 months supplementation in DNA extracted from uncoagulated blood (approximates circulating blood). However, when DNA methylation was determined in coagulated samples from the same individuals at the same time, significant time, dose, and MTHFR genotype-dependent changes were observed. The baseline level of DNA methylation was the same for uncoagulated and coagulated samples; marked differences between sample types were observed only after intervention. In DNA from coagulated blood, DNA methylation decreased (-14%; P<0.001) after 1 month of supplementation and 3 months after supplement withdrawal, methylation decreased an additional 23% (P<0.001) with significant variation among individuals (max+17%; min-94%). Decreases in methylation of ≥25% (vs. <25%) after discontinuation of supplementation were strongly associated with genotype: MTHFR CC vs. TT (adjusted odds ratio [aOR] 12.9, 95%CI 6.4, 26.0). The unexpected difference in DNA methylation between DNA extracted from coagulated and uncoagulated samples in response to folic acid supplementation is an important finding for evaluating use of folic acid and investigating the potential effects of folic acid supplementation on coagulation.  相似文献   

12.

Background

Countries worldwide recommend women planning pregnancy to use daily 400 µg of synthetic folic acid in the periconceptional period to prevent birth defects in children. The underlying mechanisms of this preventive effect are not clear, however, epigenetic modulation of growth processes by folic acid is hypothesized. Here, we investigated whether periconceptional maternal folic acid use and markers of global DNA methylation potential (S-adenosylmethionine and S-adenosylhomocysteine blood levels) in mothers and children affect methylation of the insulin-like growth factor 2 gene differentially methylation region (IGF2 DMR) in the child. Moreover, we tested whether the methylation of the IGF2 DMR was independently associated with birth weight.

Methodology/Principal Findings

IGF2 DMR methylation in 120 children aged 17 months (SD 0.3) of whom 86 mothers had used and 34 had not used folic acid periconceptionally were studied. Methylation was measured of 5 CpG dinucleotides covering the DMR using a mass spectrometry-based method. Children of mother who used folic acid had a 4.5% higher methylation of the IGF2 DMR than children who were not exposed to folic acid (49.5% vs. 47.4%; p = 0.014). IGF2 DMR methylation of the children also was associated with the S-adenosylmethionine blood level of the mother but not of the child (+1.7% methylation per SD S-adenosylmethionine; p = 0.037). Finally, we observed an inverse independent association between IGF2 DMR methylation and birth weight (−1.7% methylation per SD birthweight; p = 0.034).

Conclusions

Periconceptional folic acid use is associated with epigenetic changes in IGF2 in the child that may affect intrauterine programming of growth and development with consequences for health and disease throughout life. These results indicate plasticity of IGF2 methylation by periconceptional folic acid use.  相似文献   

13.

Background

Aberrant DNA methylation is common in lung adenocarcinoma, but its timing in the phases of tumor development is largely unknown. Delineating when abnormal DNA methylation arises may provide insight into the natural history of lung adenocarcinoma and the role that DNA methylation alterations play in tumor formation.

Methodology/Principal Findings

We used MethyLight, a sensitive real-time PCR-based quantitative method, to analyze DNA methylation levels at 15 CpG islands that are frequently methylated in lung adenocarcinoma and that we had flagged as potential markers for non-invasive detection. We also used two repeat probes as indicators of global DNA hypomethylation. We examined DNA methylation in 249 tissue samples from 93 subjects, spanning the putative spectrum of peripheral lung adenocarcinoma development: histologically normal adjacent non-tumor lung, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS, formerly known as bronchioloalveolar carcinoma), and invasive lung adenocarcinoma. Comparison of DNA methylation levels between the lesion types suggests that DNA hypermethylation of distinct loci occurs at different time points during the development of lung adenocarcinoma. DNA methylation at CDKN2A ex2 and PTPRN2 is already significantly elevated in AAH, while CpG islands at 2C35, EYA4, HOXA1, HOXA11, NEUROD1, NEUROD2 and TMEFF2 are significantly hypermethylated in AIS. In contrast, hypermethylation at CDH13, CDX2, OPCML, RASSF1, SFRP1 and TWIST1 and global DNA hypomethylation appear to be present predominantly in invasive cancer.

Conclusions/Significance

The gradual increase in DNA methylation seen for numerous loci in progressively more transformed lesions supports the model in which AAH and AIS are sequential stages in the development of lung adenocarcinoma. The demarcation of DNA methylation changes characteristic for AAH, AIS and adenocarcinoma begins to lay out a possible roadmap for aberrant DNA methylation events in tumor development. In addition, it identifies which DNA methylation changes might be used as molecular markers for the detection of preinvasive lesions.  相似文献   

14.
15.
DNA methylation strongly affects chromatin structure and the regulation of gene expression. For many years, bisulfite sequencing PCR (BSP) has served as the “gold standard” for measuring DNA methylation. However, with the evolution of pyrosequencing as a tool to evaluate DNA methylation, the need arises to compare the relative efficiencies of the two techniques in measuring DNA methylation. We provide for the first time a direct assessment of BSP and pyrosequencing to detect and quantify hypomethylation, hypermethylation, and mixed methylation of the ABCB1 promoter in various drug-sensitive and drug-resistant MCF-7 breast cancer cell lines through head-to-head experimentation. Our findings indicate that although both methods can reliably detect increased, decreased, and mixed methylation of DNA, BSP appears to be more sensitive than pyrosequencing at detecting strong hypermethylation of DNA. However, we also observed greater variability in the methylation of CpG sites by BSP, possibly due to the additional bacterial cloning step required by BSP over pyrosequencing. BSP and pyrosequencing equally detected hypomethylation and mixed methylation of DNA. The ability of pyrosequencing to reliably detect differences in DNA methylation across cell populations without requiring the cloning of bisulfite-treated DNA into bacterial expression vectors was seen as a major advantage of this technique.  相似文献   

16.
Low folate intake is associated with vascular disease. Causality has been attributed to hyperhomocysteinemia. However, human intervention trials have failed to show the benefit of homocysteine-lowering therapies. Alternatively, low folate may promote vascular disease by deregulating DNA methylation. We investigated whether folate could alter DNA methylation and atherosclerosis in ApoE null mice. Mice were fed one of six diets (n?=?20 per group) for 16?weeks. Basal diets were either control (C; 4% lard) or high fat (HF; 21% lard and cholesterol, 0.15%) with different B-vitamin compositions: (1) folic acid and B-vitamin replete, (2) folic acid deficient (-F), (3) folic acid, B6 and B12 deficient (-F-B). -F diets decreased plasma (up to 85%; P?相似文献   

17.
In the present study we determined the age-related effect of methionine-enriched diet, a model of hyperhomocysteinemia, on the level of plasma homocysteine and hepatic global DNA methylation in rats. Feeding methionine diet to middle-aged rats for only 14 days resulted in a significant increase in plasma homocysteine level and DNA hypomethylation. In contrast, feeding the methionine-containing diet for 2 weeks to juvenile or post-pubertal animals did not alter the level of plasma homocysteine or hepatic DNA methylation. Supplementation of the methionine-enriched diet with vitamins B6, B12 and folic acid prevented both hepatic DNA hypomethylation and an increase of plasma homocysteine concentration in the middle-aged rats. These findings indicate that the elevated level of plasma homocysteine may be indicative of much broader and deeper alterations in intracellular methylation dysfunction, and suggest that dietary enrichment with B-vitamins is essential for the metabolism of homocysteine, especially in adult animals.  相似文献   

18.
Human leukocyte antigen II (HLA-II) plays an important role in host immune responses to cancer cells. Changes in gene methylation may result in aberrant expression of HLA-II, serving a key role in the pathogenesis of Kazakh esophageal squamous cell carcinoma (ESCC). We analyzed the expression level of HLA-II (HLA-DP, -DQ, and -DR) by immunohistochemistry, as well as the methylation status of HLA-DRB1 and HLA-DQB1 by MassARRAY spectrometry in Xinjiang Kazakh ESCC. Expression of HLA-II in ESCC was significantly higher than that in cancer adjacent normal (ACN) samples (P < 0.05). Decreased HLA-II expression was closely associated with later clinical stages of ESCC (P < 0.05). Hypomethylation of HLA-DRB1 and hypermethylation of HLA-DQB1 was significantly correlated with occurrence of Kazakh ESCC (P < 0.01), and mainly manifested as hypomethylation of CpG9, CpG10-11, and CpG16 in HLA-DRB1 and hypermethylation of CpG6-7 and CpG16-17 in HLA-DQB1 (P < 0.01). Moreover, hypomethylation of HLA-DQB1 CpG6-7 correlated with poor differentiation in ESCCs, whereas hypermethylation of HLA-DRB1 CpG16 and hypomethylation of HLA-DQB1 CpG16-17 were significantly associated with later stages of ESCC (P < 0.05). A significant inverse association between HLA-DRB1 CpG9 methylation and HLA-II expression was found in ESCC (P < 0.05). These findings suggest aberrant HLA-DRB1 and HLA-DQB1 methylation contributes to the aberrant expression of HLA-II. These molecular changes may influence the immune response to specific tumor epitopes, promoting the occurrence and progression of Kazakh ESCC.  相似文献   

19.
End-stage renal disease (ESRD) is one of the main causes of morbidity and mortality worldwide. DNA methylation is a major epigenetic modification of the genome that has the potential to silence gene expression. Methylenetetrahydrofolate reductase (MTHFR) gene inactivation was recognized as a predisposing factor of hyperhomocysteinemia in renal patients. The current study aimed to determine the methylation status within the MTHFR promoter region in DNA isolated from peripheral blood of ESRD patients and controls and the correlation of this methylation with the clinical and biochemical characteristics in ESRD patients. Ninety-six ESRD patients and 96 healthy ethnically, age and gender matched controls were included within the study. MTHFR promoter methylation was assessed using methylation specific polymerase chain reaction. The frequency of MTHFR methylation was significantly higher in ESRD patients than in controls (P = 0.003), additionally, MTHFR methylation was associated to a decrease in estimated glomerular filtration rate, serum high-density lipoprotein cholesterol level and an increase in both serum total cholesterol and low-density lipoprotein cholesterol levels. Data generated from this study suggest the possible involvement of MTHFR promoter methylation in the pathogenesis of ESRD and support a new dimension of MTHFR inactivation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号