首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Cabozantinib is known as an inhibitor of receptor tyrosine kinases mainly targeting AXL receptor tyrosine kinase (AXL), MET proto-oncogene-encoded receptor tyrosine kinase (MET), and vascular endothelial growth factor receptor 2. Growth arrest-specific 6 (GAS6) and hepatocyte growth factor (HGF), the natural ligands of AXL and MET, respectively, are associated with the induction of cancer cell proliferation or metastasis. Currently, it is still unclear how cabozantinib regulates cancer cell migration and invasion by inhibiting AXL and MET. This study was conducted to investigate the mechanism underlying the anti-cancer effects of cabozantinib through regulation of AXL and MET signaling.The results of Boyden chamber assays showed that cancer cell migration was induced by GAS6 and HGF in SKOV3 cells in serum-free medium. Combinatorial treatment with GAS6 and HGF exerted an additive effect on cell migration. Furthermore, we examined the role of AXL and MET signaling in cell migration. Short interfering RNA targeting AXL and MET inhibited GAS6- and HGF-induced migration, respectively. Double knockdown of AXL and MET completely suppressed cell migration induced by combination treatment with GAS6 and HGF compared to AXL or MET inhibition alone. Finally, we investigated the effects of cabozantinib on cell migration and invasion. Cabozantinib inhibited AXL and MET phosphorylation and downregulated the downstream mediators, phosphorylated SRC in the presence of both GAS6 and HGF in SKOV3 cells. The cell migration and invasion induced by combined GAS6 and HGF treatment were suppressed by cabozantinib, but not by capmatinib, a selective MET inhibitor.Our data indicate that the GAS6-AXL and HGF-MET signal pathways markedly contribute to cancer cell migration and invasion in an independent manner, suggesting that simultaneous inhibition of these two pathways contributes to the anti-cancer effects of cabozantinib.  相似文献   

4.
5.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells.  相似文献   

6.
构建并鉴定miR-125b慢病毒过表达载体,研究miR-125b对卵巢癌细胞增殖和迁移的影响及其可能机制。将PcR扩增的rniR-125b前体序列与经过酶切后的GP—SupersilencingVector进行连接,产生miR-125b重组慢病毒表达载体。将重组慢病毒载体质粒、pGag/Pol、pRev和pVSV-G共转染293T细胞,包装产生慢病毒。使用收获的病毒颗粒感染卵巢癌SKOV3细胞,嘌呤霉素筛选稳定感染细胞株;实时荧光定量PCR(Real.timeqPCR)检测miR-125b在SKV03细胞中的表达;Westernblot检测其潜在靶基因HER-2的表达:MTT实验和Transwell侵袭实验分别观察miR-125b过表达后SKOV3细胞增殖和迁移能力的改变。该研究成功构建miR-125b陧病毒过表达载体,感染卵巢癌SKOV3细胞后,能够过表达miR-125b,并抑制SKOV3细胞的增殖及迁移,降低潜在靶基因HER-2的表达。该研究证叽miR-125b能够抑制SKOV3细胞的增殖及迁移,并可能通过降低潜在靶基因HER-2的表达而实现。  相似文献   

7.
Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation.  相似文献   

8.
9.
10.
In the last 40 years ovarian cancer mortality rates have slightly declined and, consequently, it continues to be the fifth cause of cancer death in women. In the present study, we showed that β-catenin signaling is involved in the functions of ovarian cancer cells and interacts with the Notch system. Wnt and Notch systems showed to be prosurvival for ovarian cancer cells and their inhibition impaired cell proliferation and migration. We also demonstrated that the inhibition of β-catenin by means of two molecules, XAV939 and ICG-001, decreased the proliferation of the IGROV1 and SKOV3 ovarian cancer cell lines and that ICG-001 increased the percentage of IGROV1 cells undergoing apoptosis. The simultaneous inhibition of β-catenin and Notch signaling, by using the DAPT inhibitor, decreased ovarian cancer cell proliferation to the same extent as targeting only the Wnt/β-catenin pathway. A similar effect was observed in IGROV1 cell migration with ICG-001 and DAPT. ICG-001 increased the Notch target genes Hes-1 and Hey-1 and increased Jagged1 expression. However, no changes were observed in Dll4 or Notch 1 and 4 expressions. Our results suggest that Notch and β-catenin signaling co-operate in ovarian cancer to ensure the proliferation and migration of cells and that this could be achieved, at least partly, by the upregulation of Notch Jagged1 ligand in the absence of Wnt signaling. We showed that the Wnt pathway crosstalks with Notch in ovarian cancer cell functions, which may have implications in ovarian cancer therapeutics.  相似文献   

11.
G protein‐coupled estrogen receptor (GPER) is identified as a critical estrogen receptor, in addition to the classical estrogen receptors ERα and ERβ. In ERα‐negative ovarian cancer cells, our previous studies have found that estrogen stimulated cell proliferation and metastasis via GPER. However, the ligand‐independent function of GPER in ovarian cancer cells is still not clear. Herein, we describe that GPER has a co‐expression with ERα and ERβ, which are first determined in SKOV3 ovarian cancer cell line. In the absence of estrogen, GPER depletion by specific siRNA inhibits the proliferation, migration and invasion of SKOV3 cells. Whereas abrogation of ERα or ERβ by specific antagonist MPP and PHTPP has the opposite effects for stimulation of cell growth. Markedly, GPER knockdown attenuates MPP or PHTPP‐induced cell proliferation, migration and invasion. Furthermore, GPER modulates protein expression of the cell cycle critical components, c‐fos and cyclin D1 and factors for cancer cell invasion and metastasis, matrix metalloproteinase 2 (MMP‐2) and MMP‐9. These findings establish that GPER ligand‐independently stimulates the proliferation, migration and invasion of SKOV3 cells. Knockdown of GPER attenuates the progression of ovarian cancer that caused by functional loss of ERα or ERβ. Targeting GPER provides new aspect as a potential therapeutic strategy in ovarian cancer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
摘要 目的:探讨狐猴酪氨酸激酶2(LMTK2)基因沉默对人上皮性卵巢癌(EOC)细胞生长和转移的抑制作用及其可能的机制。方法:通过RT-qPCR和Western-blot检测了人正常卵巢上皮细胞IOSE80和人上皮性卵巢癌细胞系(SKOV3、ES2、OVCAR-3和HEY)中LMTK2的表达,使用Lipofectamine 3000转染试剂将LMTK2的短发夹RNA(shRNA)、阴性对照shRNA、LMTK2过表达重组pcDNA3.1质粒或阴性对照质粒转染到SKOV3细胞中,并分为LMTK2-shRNA组、NC-shRNA组、LMTK2-pcDNA3.1组或NC-pcDNA3.1组。另外,使用PI3K/Akt抑制剂LY294002处理SKOV3细胞1 h。通过CCK-8法测定细胞增殖,Annexin V-FITC/PI染色法测定细胞凋亡,划痕实验评价细胞迁移,Transwell实验评价细胞侵袭。对BALB/c雌性裸鼠皮下注射转染NC-shRNA或LMTK2-shRNA的SKOV3细胞建立体内移植瘤模型,并记录接种28 d内的肿瘤体积。结果:与人正常卵巢上皮细胞IOSE80相比,卵巢癌细胞系(SKOV3、ES2、OVCAR-3和HEY)中LMTK2的mRNA和蛋白表达水平均显著升高,其中SKOV3的LMTK2 mRNA和蛋白表达水平最高(P<0.05)。与NC-shRNA组相比,LMTK2-shRNA组SKOV3细胞活力、相对迁移面积、侵袭细胞数均显著降低,而细胞凋亡率显著升高(P<0.05)。此外,与NC-shRNA组相比,LMTK2-shRNA组SKOV3细胞中Bax的蛋白表达水平显著升高,而Bcl-2、MMP2、MMP9、p-Akt的蛋白表达水平显著降低(P<0.05)。LY294002处理逆转了上调LMTK2对SKOV3细胞生长和转移的影响(P<0.05)。在接种第21天和28天时,与NC-shRNA组相比,LMTK2-shRNA组裸鼠的肿瘤体积显著降低(P<0.05)。结论:LMTK2基因沉默通过抑制PI3K/Akt信号通路降低了人上皮性卵巢癌细胞的生长和转移能力。  相似文献   

13.
Epithelial ovarian cancer is the fifth common cause of cancer death in women and the most lethal gynecological malignancies. Our previous studies have shown that up-regulation of Connexin43, a gap-junction subunit crucial for cell-cell communication, enhances ovarian cancer cell migration. Betacellulin is a member of the epidermal growth factor (EGF) family which can bind to multiple EGF family receptors. Overexpression of betacellulin is found in a variety of cancers and is associated with reduced survival. However, the specific roles and molecular mechanisms of betacellulin in ovarian cancer progression are poorly understood. In the current study, we tested the hypothesis that betacellulin induces ovarian cancer cell migration by up-regulating Connexin43. Our results showed that treatment with betacellulin significantly increased Connexin43 expression and cell migration in both OVCAR4 and SKOV3 ovarian cancer cell lines. Moreover, betacellulin induced the activation of MEK-ERK signaling, and its effects on Connexin43 were inhibited by pre-treatment with U0126. Pre-treatment with AG1478 totally blocked the activation of MEK-ERK signaling but only partially inhibited betacellulin-induced Connexin43 expression and cell migration. Most importantly, betacellulin-induced cell migration was attenuated by knockdown of Connexin43, and co-treatment with gap junction inhibitor carbenoxolone did not alter this effect. Our results suggest a bilateral role of Connexin43 in ovarian cancer migration, and also demonstrate a gap junction-independent mechanism of betacellulin.  相似文献   

14.
15.
16.
Abnormal activation the WNT/β-catenin signaling pathway has been associated with ovarian carcinomas, but a specific WNT ligand and pertinent downstream mechanisms are not fully understood. In this study, we found abundant WNT7A in the epithelium of serous ovarian carcinomas, but not detected in borderline and benign tumors, normal ovary, or endometrioid carcinomas. To characterize the role of WNT7A in ovarian tumor growth and progression, nude mice were injected either intraperitoneally or subcutaneously with WNT7A knocked down SKOV3.ip1 and overexpressed SKOV3 cells. In the intraperitoneal group, mice receiving SKOV3.ip1 cells with reduced WNT7A expression developed significantly fewer tumor lesions. Gross and histologic examination revealed greatly reduced invasion of WNT7A knockdown cells into intestinal mesentery and serosa compared with the control cells. Tumor growth was regulated by loss or overexpression of WNT7A in mice receiving subcutaneous injection as well. In vitro analysis of cell function revealed that cell proliferation, adhesion, and invasion were regulated by WNT7A. The activity of the T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter was stimulated by overexpression of WNT7A in ovarian cancer cells. Cotransfection with WNT7A and FZD5 receptor further increased activity, and this effect was inhibited by cotransfection with SFRP2 or dominant negative TCF4. Overexpression of WNT7A stimulated matrix metalloproteinase 7 (MMP7) promoter, and mutation of TCF-binding sites in MMP7 promoter confirmed that activation of MMP7 promoter by WNT7A was mediated by β-catenin/TCF signaling. Collectively, these results suggest that reexpression of WNT7A during malignant transformation of ovarian epithelial cells plays a critical role in ovarian cancer progression mediated by WNT/β-catenin signaling pathway.  相似文献   

17.
18.
19.
Cervical cancer is a cancer arising from the cervix, and it is the fourth most common cause of death in women. Overexpression of fibronectin 1 (FN1) was observed in many tumors and associated with the survival and metastasis of cancer cells. However, the mechanism by which FN1 promotes cervical cancer cell viability, migration, adhesion, and invasion, and inhibits cell apoptosis through focal adhesion kinase (FAK) signaling pathway remains to be investigated. Our results demonstrated that FN1 was upregulated in patients with cervical cancer and higher FN1 expression correlated with a poor prognosis for patients with cervical cancer. FN1 knockdown by small interfering RNA (siRNA) inhibited SiHa cell viability, migration, invasion, and adhesion, and promoted cell apoptosis. FN1 overexpression in CaSki cell promoted cell viability, migration, invasion, and adhesion, and inhibited cell apoptosis. Further, phosphorylation of FAK, a main downstream signaling molecule of FN1, and the protein expression of Bcl-2/Bax, matrix metalloproteinase 2 (MMP-2), matrix metalloproteinase 9 (MMP-9), and N-cadherin was upregulated in CaSki cells with FN1 overexpression, but caspase-3 protein expression was downregulated. The FAK phosphorylation inhibitor PF573228 inhibited FN1 overexpression-induced expression of those proteins in CaSki cells with FN1 overexpression. In vivo experiment demonstrated that FN1 knockdown significantly inhibited FN1 expression, phosphorylation of FAK, and tumor growth in xenograft from the nude mice. These results suggest that FN1 regulates the viability, apoptosis, migration, invasion, and adhesion of cervical cancer cells through the FAK signaling pathway and is a potential therapeutic target in the treatment of cervical cancer.  相似文献   

20.
Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号