首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.  相似文献   

3.
4.
Retrotransposon expression or mobility is increased with age in multiple species and could promote genome instability or altered gene expression during aging. However, it is unclear whether activation of retrotransposons during aging is an indirect result of global changes in chromatin and gene regulation or a result of retrotransposon-specific mechanisms. Retromobility of a marked chromosomal Ty1 retrotransposon in Saccharomyces cerevisiae was elevated in mother cells relative to their daughter cells, as determined by magnetic cell sorting of mothers and daughters. Retromobility frequencies in aging mother cells were significantly higher than those predicted by cell age and the rate of mobility in young populations, beginning when mother cells were only several generations old. New Ty1 insertions in aging mothers were more strongly correlated with gross chromosome rearrangements than in young cells and were more often at non-preferred target sites. Mother cells were more likely to have high concentrations and bright foci of Ty1 Gag–GFP than their daughter cells. Levels of extrachromosomal Ty1 cDNA were also significantly higher in aged mother cell populations than their daughter cell populations. These observations are consistent with a retrotransposon-specific mechanism that causes retrotransposition to occur preferentially in yeast mother cells as they begin to age, as opposed to activation by phenotypic changes associated with very old age. These findings will likely be relevant for understanding retrotransposons and aging in many organisms, based on similarities in regulation and consequences of retrotransposition in diverse species.  相似文献   

5.
To study the chromosomal partitioning mechanism in cell division, we have isolated a novel type of Escherichia coli mutants which formed anucleate cells, by using newly developed techniques. One of them, named mukA1, is not lethal and produces normal-sized anucleate cells at a frequency of 0.5 to 3% of total cells in exponentially growing populations but does not produce filamentous cells. Results suggest that the mutant is defective in the chromosome positioning at regular intracellular positions and fails frequently to partition the replicated daughter chromosomes into both daughter cells, resulting in production of one anucleate daughter cell and one with two chromosomes. The mukA1 mutation causes pleiotropic effects: slow growth, hypersensitivity to sodium dodecyl sulfate, and tolerance to colicin E1 protein, in addition to anucleate cell formation. Cloning of the mukA gene indicates that the mukA1 mutation is recessive and that the mukA gene is identical to the tolC gene coding for an outer membrane protein.  相似文献   

6.
Recent studies have uncovered the links between aging, rejuvenation and polar protein transport in the budding yeast Saccharomyces cerevisiae. Here, we examined a still unexplored possibility for co-regulation of polar mRNA transport and lifespan. To monitor the amount and distribution of mRNA-containing granules in mother and daughter cells, we used a fluorescent mRNA-labeling system, with MFA2 as a reporter gene. The results obtained showed that deletion of the selected longevity regulators in budding yeast had a significant impact on the polar mRNA transport. This included changes in the amount of mRNA-containing granules in cytoplasm, their aggregation and distribution between the mother and daughter cells. A significant negative correlation was found between strain-specific longevity, amount of granules and total fluorescent intensity both in mother and daughter cells. As indicated by the coefficient of determination, approximately 50–75% of variation in yeast lifespan could be attributed to the differences in polar mRNA transport.  相似文献   

7.
8.
9.
10.
Reproductive capacity and mode of death of yeast cells   总被引:4,自引:0,他引:4  
The technique of micromanipulation was used to observe the number of daughter cells produced by individual cells of two yeasts, one a brewing strain and the other a hexaploid hybrid. The mode in which these cells died was also recorded. An average reproductive capacity of 34 daughter cells was found for the brewing yeast and of 17 daughter cells for the hexaploid strain. Two distinct modes of death were observed, one in which the final daughter cell appeared normal and the other where the last daughter cell could not be detached from its mother and both cells died. A correlation was obtained between the mode of death of a cell and its reproductive capacity. A number of final daughter cells (the 28th - 46th buds of their mother cell) was also observed through a considerable number of divisions and these cells were found apparently normal in their reproductive ability. It is suggested that cessation of budding is a consequence of reduction of the active surface to volume ratio because of the lower metabolic activity of scar tissue.  相似文献   

11.
Recent studies have uncovered the links between aging, rejuvenation and polar protein transport in the budding yeast Saccharomyces cerevisiae. Here, we examined a still unexplored possibility for co-regulation of polar mRNA transport and lifespan. To monitor the amount and distribution of mRNA-containing granules in mother and daughter cells, we used a fluorescent mRNA-labeling system, with MFA2 as a reporter gene. The results obtained showed that deletion of the selected longevity regulators in budding yeast had a significant impact on the polar mRNA transport. This included changes in the amount of mRNA-containing granules in cytoplasm, their aggregation and distribution between the mother and daughter cells. A significant negative correlation was found between strain-specific longevity, amount of granules and total fluorescent intensity both in mother and daughter cells. As indicated by the coefficient of determination, approximately 50–75% of variation in yeast lifespan could be attributed to the differences in polar mRNA transport.  相似文献   

12.
One mechanism to generate daughter cells with distinct fates is the asymmetric inheritance of regulatory proteins, leading to differential gene regulation in the daughter cells. This mode of cell division is termed 'asymmetric cell division.' The nervous system of the fly employs asymmetric cell division, both in the central nervous system, to generate neural precursors, neurons and glial cells; and in the peripheral nervous system, to create sensory organs that are composed of multiple cell types. These cell lineages are excellent models to examine the gene expression program that leads to fate acquisition, the cell-fate determinants that control these programs and how these determinants, in turn, are distributed through cell polarity machinery.  相似文献   

13.
14.
The unc-86 gene product couples cell lineage and cell identity in C. elegans   总被引:22,自引:0,他引:22  
M Finney  G Ruvkun 《Cell》1990,63(5):895-905
The C. elegans gene unc-86 is required in several distinct neuroblast lineages for daughter cells to become different from their mothers, and is also required for the specification of particular neural identities. Consistent with the fact that unc-86 encodes a POU domain protein, we find that the unc-86 protein is localized to the nucleus. In the affected lineages, unc-86 protein appears within a few minutes after cell division in the nuclei of those daughter cells that are transformed by unc-86 mutations. Thus, expression of unc-86 protein is dependent on cell lineage. unc-86 protein is not asymmetrically segregated at further divisions. unc-86 protein also appears shortly after cell division in the nuclei of particular identified differentiating neurons; at least some of these neurons are nonfunctional in unc-86 mutants.  相似文献   

15.
16.
A previously identified Tetrahymena thermophila actin gene (C. G. Cupples and R. E. Pearlman, Proc. Natl. Acad. Sci. USA 83:5160-5164, 1986), here called ACT1, was disrupted by insertion of a neo3 cassette. Cells in which all expressed copies of this gene were disrupted exhibited intermittent and extremely slow motility and severely curtailed phagocytic uptake. Transformation of these cells with inducible genetic constructs that contained a normal ACT1 gene restored motility. Use of an epitope-tagged construct permitted visualization of Act1p in the isolated axonemes of these rescued cells. In ACT1Delta mutant cells, ultrastructural abnormalities of outer doublet microtubules were present in some of the axonemes. Nonetheless, these cells were still able to assemble cilia after deciliation. The nearly paralyzed ACT1Delta cells completed cleavage furrowing normally, but the presumptive daughter cells often failed to separate from one another and later became reintegrated. Clonal analysis revealed that the cell cycle length of the ACT1Delta cells was approximately double that of wild-type controls. Clones could nonetheless be maintained for up to 15 successive fissions, suggesting that the ACT1 gene is not essential for cell viability or growth. Examination of the cell cortex with monoclonal antibodies revealed that whereas elongation of ciliary rows and formation of oral structures were normal, the ciliary rows of reintegrated daughter cells became laterally displaced and sometimes rejoined indiscriminately across the former division furrow. We conclude that Act1p is required in Tetrahymena thermophila primarily for normal ciliary motility and for phagocytosis and secondarily for the final separation of daughter cells.  相似文献   

17.
Within a cellular clone, individual cells can express different members of a gene family. If the difference in expression is transmitted to daughter cells, 'phenotypic clones' are formed. Such clonal phenotypic variation has evolved independently in phylogenetically distant parasitic protozoa under similar selective pressure: the need for phenotypic diversity at several steps of their life cycle. Here, I review clonal phenotypic variation processes, outline their role in parasite biology and argue that clonal phenotypic variation is complementary to sexual reproduction as a source of phenotypic diversity.  相似文献   

18.
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.  相似文献   

19.
Multinucleate cells of Coelastrum undergo precisely directed cytokinesis, guided by phycoplast microtubules, to form a number of uninucleate daughter cells which subsequently adhere to form characteristically patterned aggregates. As there is no movement of the daughter cells relative to one another before their adhesion, the disposition of cells in daughter colonies reflects the pattern of cytokinesis of parent cells. Centrioles lie at the poles of the mitotic nuclei which are partially enclosed by a perinuclear envelope of endoplasmic reticulum. The centrioles disappear at the time of cytokinesis of the parental cell and apparently reform de novo once the daughter cells have acquired a cell wall following their adhesion. The trilaminar layer of cell wall, often termed the pectic layer, does not stain with ruthenium red and resists acetolysis suggesting that it contains sporopollenin rather than pectin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号