首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by visceral hypersensitivity and altered bowel function. There are increasing evidences suggested that VSL#3 probiotics therapy has been recognized as an effective method to relieve IBS-induced symptoms. The aim of this study was to examine the effects of VSL#3 probiotics on visceral hypersensitivity (VH), nitric oxide (NO), fecal character, colonic epithelium permeability, and tight junction protein expression. IBS model was induced by intracolonic instillation of 4% acetic acid and restraint stress in rats. After subsidence of inflammation on the seventh experimental day, the rats were subjected to rectal distension, and then the abdominal withdrawal reflex and the number of fecal output were measured, respectively. Also, colonic permeability to Evans blue was measured in vivo, and tight junction protein expression was studied by immunohistochemistry and immunoblotting method. Rats had been pretreated with VSL#3 or aminoguanidine (NOS inhibitor) or VSL#3+ aminoguanidine before measurements. The rats at placebo group showed hypersensitive response to rectal distension (P < 0.05) and defecated more stools than control rats (P < 0.05), whereas VSL#3 treatment significantly attenuated VH and effectively reduced defecation. Aminoguanidine reduced the protective effects of VSL#3 on VH. A pronounced increase in epithelial permeability and decreased expression of tight junction proteins (occludin, ZO-1) in placebo group were prevented by VSL#3, but not aminoguanidine. VSL#3 treatment reduce the hypersensitivity, defecation, colonic permeability and increase the expression of tight junction proteins (occludin, ZO-1). As the part of this effect was lowered by NOS inhibitor, NO might play a role in the protective effect of VSL#3 to some extent.  相似文献   

2.
3.
Inflammatory bowel disease (IBD) shows an increasing prevalence and harm in western countries. Conventional therapies are associated with bad compliance and adverse side effects. Natural substances like cinnamon extract (CE) could be an additional therapy. We found recently that CE acts anti-inflammatory on mast cells — discussed of being relevant in IBD. Here, we analysed the effects of CE on murine IL-10−/− colitis as model for IBD. Mice were treated 12 weeks with or without CE in drinking water. Clinical scores and disease activity index were assessed. Colonic tissue samples were analysed for infiltration, tissue damage, bowel wall thickness, expression of pro-inflammatory mediators, mast cell proteases, tight junction proteins, and NF-κB signaling. Following treatment with CE, symptoms of murine colitis as well as increased infiltration of immune cells, tissue damage and bowel wall thickness in colon tissue of IL-10−/− mice were diminished significantly. MIP-2, TNF, IFNγ, CCL2, CCL3, CCL4 and IL-1β as well as MC-CPA, MCP-1 and MCP-4 were strongly upregulated in IL-10−/− mice compared to WT, but noteworthy not in CE group. Expression of tight junction proteins was not influenced by CE. Phosphorylation of IκB was slightly down-regulated in CE treated IL-10−/− mice compared to IL-10−/− controls. In summary, CE decreases inflammatory symptoms and expression of inflammatory markers in murine IL-10−/− colitis. CE has no influence on tight junction proteins, but seems acting via reducing pro-inflammatory mediators and recruitment of neutrophil granulocytes probably by inhibiting NF-κB signaling.  相似文献   

4.
BackgroundSTW 5 is a fixed herbal combination containing extracts from nine medicinal plants: bitter candytuft, greater celandine, garden angelica roots, lemon balm leaves, peppermint leaves, caraway fruits, licorice roots, chamomile flowers, and milk thistle fruit. STW 5 is a clinically proven treatment for functional dyspepsia and irritable bowel syndrome.PurposeUsing a static in vitro method, we simulated oral, gastric, and small intestinal digestion and analyzed the metabolic profile changes by UHPLC–HRMS to determine the impact of oro-gastro-intestinal digestion on STW 5 constituents.Study Design and MethodsSTW 5 was incubated according to the InfoGest consensus method. Samples of each digestive phase were analyzed by UHPLC–HRMS in ESI positive and negative modes. After data processing, background subtraction, and normalization, the peak areas of detectable compounds were compared to untreated reference samples and recovery ratios were calculated to monitor the metabolic profile of STW 5 during simulated digestion.ResultsAlthough the levels of some constituents were reduced, we did not observe complete degradation of any of the constituents of STW 5 upon in vitro digestion. We did not detect any new metabolites beyond increased levels of caffeic acid and liquiritigenin due to degradation of progenitor compounds. Changes observed in intestinal bioaccessibility ratios were mainly a result of isomerization, hydrolysis, protein binding, and low water solubility.ConclusionThe majority of STW 5 constituents are stable towards simulated in vitro digestion and can reach the colon to interact with gut microbiota if they remain unabsorbed in the upper intestinal tract.  相似文献   

5.
Probiotics are known to be beneficial in preventing different diseases in model animals, including inflammatory bowel disease. However, there are few studies on probiotics related to miRNA regulation and disease status. In this article, the beneficial role and mechanisms of the probiotic strain Bifidobacterium bifidum ATCC 29521 have been studied in ulcerative colitis using dextran sodium sulphate (DSS) model. Male C57JBL/6 mice were randomly divided into three groups (n=7): Normal group, dextran sulphate sodium (DSS) group, and Bifido group gavage with Bifidobacterium bifidum ATCC 29521 (2×108 CFU/day). Our strain restored the DSS-caused damage by regulating the expression of immune markers and tight junction proteins (TJP) in the colon; briefly by up-regulating ROS-scavenging enzymes (SOD1, SOD2, CAT, and GPX2), anti-inflammatory cytokines (IL-10, PPARγ, IL-6), TJP's (ZO-1, MUC-2, Claudin-3, and E Cadherin-1) and downregulating inflammatory genes (TNF-α, IL-1β) in Bifido group mice. Inflammatory markers appeared to be regulated by NF-κB nuclear P65 subunit, and its translocation was inhibited in Bifido group mice colon. In addition, the expression of inflammatory genes and colonic TJP were also associated with the restoration of miRNAs (miR-150, miR-155, miR-223) in B. bifidum ATCC 29521 treated Bifido group. The dysbiosis executed by DSS was restored in the Bifido group, demonstrating that B. bifidum ATCC 29521 possessed a probiotic role in our DSS colitis mouse model. B. bifidum ATCC 29521 exhibited its probiotic role through its anti-inflammatory role by modulating miRNA-associated TJP and NF-κB regulation and by partially restoring dysbiosis.  相似文献   

6.
AimsUnder normal conditions, the intestinal mucosa acts as a local barrier to prevent the influx of luminal contents. The intestinal epithelial tight junction is comprised of several membrane associated proteins, including zonula occludens-1 (ZO-1) and occludin. Disruption of this barrier can lead to the production of pro-inflammatory mediators and ultimately multiple organ failure. We have previously shown that Pentoxifylline (PTX) decreases histologic gut injury and pro-inflammatory mediator synthesis. We hypothesize that PTX prevents the breakdown of ZO-1 and occludin in an in vitro model of immunostimulated intestinal cell monolayers.Main methodsCaco-2 human enterocytes were grown as confluent monolayers and incubated under control conditions, or with PTX (2 mM), Cytomix (TNF-α, IFN-γ, IL-1), or Cytomix + PTX for 24 h. Occludin and ZO-1 protein levels were analyzed by Western blot. Confocal microscopy was used to assess the cytoplasmic localization of ZO-1 and occludin.Key findingsCytomix stimulation of Caco-2 cells resulted in a 50% decrease in both occludin and ZO-1 protein. Treatment with Cytomix + PTX restored both occludin and ZO-1 protein to control levels. Confocal microscopy images show that Cytomix caused an irregular, undulating appearance of ZO-1 and occludin at the cell junctions. Treatment with PTX prevented the Cytomix-induced changes in ZO-1 and occludin localization.SignificanceTreatment with PTX decreases the pro-inflammatory cytokine induced changes in the intestinal tight junction proteins occludin and ZO-1. Pentoxifylline may be a useful adjunct in the treatment of sepsis and shock by attenuating intestinal barrier breakdown.  相似文献   

7.
Feng S  Cen J  Huang Y  Shen H  Yao L  Wang Y  Chen Z 《PloS one》2011,6(8):e20599
Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia.  相似文献   

8.
Clinical studies with the fixed herbal combination product STW 5 (Iberogast®) have indicated an efficacy comparable to metoclopramide (5-HT3 antagonist) and cisapride (5-HT4 agonist) in functional gastro-intestinal diseases like functional dyspepsia (FD) and irritable bowel syndrome (IBS). Since serotonin (5-HT3 and 5-HT4) and muscarinic M3 receptors are known to play a central role in the etiology of FD and IBS, the extracts contained in STW 5 and several of their phytochemical components were studied in vitro for binding affinities to these receptors of the intestine. STW 5 inhibited the binding of 3H-GR113808 and 3H-4-DAMP to 5-HT4 and M3 receptors, respectively, about 10 times more potently than the binding of 3H-GR65630 to 5-HT3 receptors. IC50 values for STW 5 did correspond to extract dilutions of 1:1000 (M3 binding) and 1:2000 (5-HT4 binding). In addition, STW 5 also potently inhibited the binding to opioid receptors with an IC50 value of 1:2000. Of the nine herbal extracts contained in STW 5, the fresh plant extract of bitter candy tuft (Iberis amara) selectively inhibited binding to M3 receptors, while ethanolic extracts of celandine herb and chamomile flower were selective to 5-HT4, and liquorice root to 5-HT3 receptors. Binding affinities to human recombinant 5-HT3, 5-HT4 and M3 receptors were qualitatively similar to those of the corresponding intestinal receptors. The benzylisoquinoline alkaloid berberine had significant inhibitory action on 5-HT4 and M3 binding, showing IC50 values of 40 ng/ml (100 nM) and 200 ng/ml (500 nM), respectively, but is present in the extract of celandine herb only in traces, so that also for the celandine extract a cooperative effect of several phytochemical constituents can be assumed. These in vitro data indicate that 5-HT4 (to a lesser degree 5-HT3), muscarinic M3, and opioid receptors represent target sites for the treatment of FD and IBS with STW 5 (Iberogast®).  相似文献   

9.
Inflammation is a common mechanism of many gastrointestinal diseases. Therefore, it is interesting to know, whether complex phytopharmaceuticals known to modulate gastrointestinal motor function reveal also anti-inflammatory properties. We tested the fixed herbal combination product STW 5 (Iberogast®) and its main component Iberis amara fresh plant extract (STW 6) to characterize their protective potential in an experimental inflammation model in vitro. The test system consisted of ileum/jejunum segments from male Wistar rats. Inflammation was evoked by intraluminal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS) for 30 min. Preincubation of TNBS together with STW 5 and STW 6 prevented the TNBS-induced inhibition of ACh-induced contractions. No differences were found between water-dissolved and ethanol-dissolved extracts. STW 5 and STW 6 reduced morphological changes induced by TNBS in mucosal and muscle layers. The IL-10 mRNA measured by qRT-PCR was not influenced by TNBS but increased by STW 5 and STW 6. The TNBS-induced increase in the TNFα-mRNA expression was suppressed by STW 5 but not by STW 6. Additionally, STW 5 decreased TNFα release in LPS-stimulated human monocytes. STW 6 influenced neither the TNFα-mRNA nor the TNFα release. These findings demonstrate that STW 5 reduced inflammation-induced alterations in ileum/jejunum segments. The effects were associated with a restoration of the disturbed ACh-induced contraction, pathohistological protection and inhibition of TNFα. STW 6 may contribute to the protective effect of STW 5 mainly by increasing IL-10 pathway but not by influencing TNFα.  相似文献   

10.
Occludin, the putative tight junction integral membrane protein, is an attractive candidate for a protein that forms the actual sealing element of the tight junction. To study the role of occludin in the formation of the tight junction seal, synthetic peptides (OCC1 and OCC2) corresponding to the two putative extracellular domains of occludin were assayed for their ability to alter tight junctions in Xenopus kidney epithelial cell line A6. Transepithelial electrical resistance and paracellular tracer flux measurements indicated that the second extracellular domain peptide (OCC2) reversibly disrupted the transepithelial permeability barrier at concentrations of < 5 μM. Despite the increased paracellular permeability, there were no changes in gross epithelial cell morphology as determined by scanning EM. The OCC2 peptide decreased the amount of occludin present at the tight junction, as assessed by indirect immunofluorescence, as well as decreased total cellular content of occludin, as assessed by Western blot analysis. Pulse-labeling and metabolic chase analysis suggested that this decrease in occludin level could be attributed to an increase in turnover of cellular occludin rather than a decrease in occludin synthesis. The effect on occludin was specific because other tight junction components, ZO-1, ZO-2, cingulin, and the adherens junction protein E-cadherin, were unaltered by OCC2 treatment. Therefore, the peptide corresponding to the second extracellular domain of occludin perturbs the tight junction permeability barrier in a very specific manner. The correlation between a decrease in occludin levels and the perturbation of the tight junction permeability barrier provides evidence for a role of occludin in the formation of the tight junction seal.  相似文献   

11.
Aminosalicylates, corticosteroids and immunosuppressants are currently the therapeutic choices in inflammatory bowel diseases (IBD), however, with limited remission and often serious side effects. Meanwhile complementary and alternative medicine (CAM) use is increasing, particularly herbal medicine. Boswellia serrata is a traditional Ayurvedic remedy with anti-inflammatory properties, of interest for its usefulness in IBDs. The mechanism of this pharmacological potential of Boswellia serrata was investigated in colonic epithelial cell monolayers exposed to H2O2 or INF-γ+TNF-α, chosen as in vitro experimental model of intestinal inflammation. The barrier function was evaluated by the transepithelial electrical resistance (TEER) and paracellular permeability assay, and by the tight junction proteins (zonula occludens-1, ZO-1 and occludin) immunofluorescence. The expression of phosphorylated NF-κB and reactive oxygen species (ROS) generation were determined by immunoblot and cytofluorimetric assay, respectively. Boswellia serrata oleo-gum extract (BSE) and its pure derivative acetyl-11-keto-β-boswellic acid (AKBA), were tested at 0.1-10 μg/ml and 0.027μg/ml, respectively. BSE and AKBA safety was demonstrated by no alteration of intestinal cell viability and barrier function and integrity biomarkers. H2O2 or INF-γ+TNF-α treatment of Caco-2 cell monolayers significantly reduced TEER, increased paracellular permeability and caused the disassembly of tight junction proteins occludin and ZO-1. BSE and AKBA pretreatment significantly prevented functional and morphological alterations and also the NF-κB phosphorylation induced by the inflammatory stimuli. At the same concentrations BSE and AKBA counteracted the increase of ROS caused by H2O2 exposure. Data showed the positive correlation of the antioxidant activity with the mechanism involved in the physiologic maintenance of the integrity and function of the intestinal epithelium. This study elucidates the pharmacological mechanisms mediated by BSE, in protecting intestinal epithelial barrier from inflammatory damage and supports its use as safe adjuvant in patients affected by IBD.  相似文献   

12.
STW 5 (Iberogast®) is a fixed combination of nine medicinal plant extracts effective in the treatment of functional dyspepsia and irritable bowel syndrome. The effects of STW 5, a combination of Iberis amara fresh plant extract, and other eight plant extracts as well as single extract components including extracts from Menthae piperitae folium, Matricariae flos and Liquiritiae radix, were assayed in guinea pig ileum with or without stimulation with acetylcholine or histamine, in order to find a possible effect on the contractility of intestinal smooth muscle.STW 5 decreased acetylcholine- and histamine-induced contraction of guinea pig ileum. This was also true for extracts of Menthae piperitae folium, Matricariae flos and L. radix. Extract from I. amara, however, showed no spasmolytic action; in contrary, it increased the basal resting tone and contraction of atonic ileal segments. This was also true when STW 5 was employed.A spasmolytic action of STW 5 could also be observed in duodenum, jejunum and colon.These data are the first to show not only the spasmolytic effects of STW 5 and its component extracts in intestinal muscle but also the tonicising effects of STW 5 through its component Iberis amara extract in relaxed intestinal muscle. Thus, pharmacological evidence suggests a dual-action principle and may explain, at least in part, the clinically observed therapeutic efficacy of STW 5 (Iberogast®) in both hypotonic and spastic dysmotility symptoms of functional dyspepsia and irritable bowel syndrome.  相似文献   

13.
A 130-kD protein that coimmunoprecipitates with the tight junction protein ZO-1 was bulk purified from Madin-Darby canine kidney (MDCK) cells and subjected to partial endopeptidase digestion and amino acid sequencing. A resulting 19–amino acid sequence provided the basis for screening canine cDNA libraries. Five overlapping clones contained a single open reading frame of 2,694 bp coding for a protein of 898 amino acids with a predicted molecular mass of 98,414 daltons. Sequence analysis showed that this protein contains three PSD-95/SAP90, discs-large, ZO-1 (PDZ) domains, a src homology (SH3) domain, and a region similar to guanylate kinase, making it homologous to ZO-1, ZO-2, the discs large tumor suppressor gene product of Drosophila, and other members of the MAGUK family of proteins. Like ZO-1 and ZO-2, the novel protein contains a COOH-terminal acidic domain and a basic region between the first and second PDZ domains. Unlike ZO-1 and ZO-2, this protein displays a proline-rich region between PDZ2 and PDZ3 and apparently contains no alternatively spliced domain. MDCK cells stably transfected with an epitope-tagged construct expressed the exogenous polypeptide at an apparent molecular mass of ~130 kD. Moreover, this protein colocalized with ZO-1 at tight junctions by immunofluorescence and immunoelectron microscopy. In vitro affinity analyses demonstrated that recombinant 130-kD protein directly interacts with ZO-1 and the cytoplasmic domain of occludin, but not with ZO-2. We propose that this protein be named ZO-3.  相似文献   

14.
目的:研究不同阶段非酒精性脂肪性肝病(NAFLD)大鼠肠粘膜紧密连接蛋白ZO-1及肌球蛋白轻链激酶(MLCK)的变化。方法:将60只雄性清洁级SD大鼠随机分为两组:正常饮食组(NDG)和高脂饮食组(FDG)。于4周、8周、12周时观察各组大鼠肝脏病理学改变;应用ELISA方法测定各阶段大鼠血清谷丙转氨酶(ALT)、谷草转氨酶(AST)、甘油三酯(TG)、胆固醇(CHOL)的变化;应用鲎实验测定各阶段大鼠门静脉血中内毒素(ET)水平;应用免疫组化方法检测肠道粘膜肌球蛋白轻链激酶(MLCK)及紧密连接蛋白(ZO-1)的表达及分布情况。结果:随着高脂饮食时间增长,高脂饮食组大鼠肝脏脂肪变性程度逐渐加重;血清ALT、AST、TG、CHOL水平逐渐升高(4周时,P0.05,8周和12周时P0.05);大鼠血浆内毒素的水平逐渐上升(0.11±0.01比0.11±0.01,P0.05;0.36±0.01比0.11±0.01,P0.05;0.44±0.15比0.18±0.03,P0.05);高质饮食组较正常饮食组大鼠紧密连接蛋白ZO-1表达逐渐下降(3.6±0.7比3.9±0.32,P0.05;2.8±0.63比3.8±0.42,P0.05;1.8±0.79比3.7±0.48,P0.05),MLCK表达逐渐增多(0.5±0.53比0.3±0.48,P0.05;1.3±0.48比0.4±0.52,P0.05;1.9±0.74比0.5±0.53,P0.05)。结论:肠粘膜紧密连接蛋白ZO-1及MLCK可通过影响肠粘膜屏障功能,改变肠粘膜的通透性,促进非酒精性脂肪肝病发生发展。  相似文献   

15.
Ultrasound (US) assisted drug delivery is receiving interest in treating posterior eye diseases, such as diabetic retinopathy due to its ability to maximize drug penetration into difficult to reach tissues. Despite its promise, the technique has only been investigated using healthy cell and tissue models, with no evidence to date about its safety in active disease. As a result, the aim of this study was to evaluate the safety of US administration in vitro in retinal pigment epithelial cells under normal and high glucose conditions. US protocols within the presently accepted safety threshold were applied and their influence on cell membrane and tight junction integrity as well as intracellular inflammation was evaluated using lactate dehydrogenase (LDH), zona occludens-1 (ZO-1), fluorescein isothiocyanate (FITC)-dextran dye leak and nuclear factor-kappaB (NF-κB) assays, respectively. Under high glucose conditions, US application increased LDH release and resulted in loss of ZO-1 labeling at 2 h; however, normal levels were restored within 24 h. US within its safety parameters did not induce any FITC-dextran dye leak or NF-κB nuclear translocation in normal or high glucose conditions. In conclusion, our results suggest that while high glucose conditions increase cell susceptibility to US-mediated stress, basal conditions can be restored within 24 h without long-lasting cell damage.  相似文献   

16.
It has been believed that epithelial cells maintain tight junctions at all times, including during cell division, to provide a continuous epithelial seal. However, changes in localization of integral tight junction proteins during cell division have not been examined. In this study, using SV40-immortalized mouse hepatocytes transfected with human Cx32 cDNA, in which tight junction strands and the endogenous tight junction proteins occludin, claudin-1, ZO-1, and ZO-2 were induced, we examined changes in localization of the tight junction proteins at all stages of cell division. All tight junction proteins were present between mitotic cells and neighboring cells throughout cell division. In late telophase, the integral tight junction proteins occludin and claudin-1, but not the cytoplasmic proteins ZO-1 and ZO-2, were concentrated in the midbody between the daughter cells and were observed at cell borders between the daugher and neighboring cells. These results indicate that the integral tight junction proteins are regulated in a different manner from the cytoplasmic proteins ZO-1 and ZO-2 during cytokinesis.  相似文献   

17.

Background

Probiotics are proposed to positively modulate the intestinal epithelial barrier formed by intestinal epithelial cells (IECs) and intercellular junctions. Disruption of this border alters paracellular permeability and is a key mechanism for the development of enteric infections and inflammatory bowel diseases (IBDs).

Methodology and Principal Findings

To study the in vivo effect of probiotic Escherichia coli Nissle 1917 (EcN) on the stabilization of the intestinal barrier under healthy conditions, germfree mice were colonized with EcN or K12 E. coli strain MG1655. IECs were isolated and analyzed for gene and protein expression of the tight junction molecules ZO-1 and ZO-2. Then, in order to analyze beneficial effects of EcN under inflammatory conditions, the probiotic was orally administered to BALB/c mice with acute dextran sodium sulfate (DSS) induced colitis. Colonization of gnotobiotic mice with EcN resulted in an up-regulation of ZO-1 in IECs at both mRNA and protein levels. EcN administration to DSS-treated mice reduced the loss of body weight and colon shortening. In addition, infiltration of the colon with leukocytes was ameliorated in EcN inoculated mice. Acute DSS colitis did not result in an anion secretory defect, but abrogated the sodium absorptive function of the mucosa. Additionally, intestinal barrier function was severely affected as evidenced by a strong increase in the mucosal uptake of Evans blue in vivo. Concomitant administration of EcN to DSS treated animals resulted in a significant protection against intestinal barrier dysfunction and IECs isolated from these mice exhibited a more pronounced expression of ZO-1.

Conclusion and Significance

This study convincingly demonstrates that probiotic EcN is able to mediate up-regulation of ZO-1 expression in murine IECs and confer protection from the DSS colitis-associated increase in mucosal permeability to luminal substances.  相似文献   

18.
Chen C  Wang P  Su Q  Wang S  Wang F 《PloS one》2012,7(4):e34946

Background

Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction.

Methodology/Principal Findings

Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression.

Conclusions/Significance

The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury.  相似文献   

19.
BackgroundEffective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII).MethodsFemale 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis.ResultsThe histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer’s patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells.ConclusionsTreatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.  相似文献   

20.
TJP3/ZO-3 is a scaffolding protein that tethers tight junction integral membrane proteins to the actin cytoskeleton and links the conserved Crumbs polarity complex to tight junctions. The physiological function of TJP3/ZO-3 is not known and mice lacking TJP3/ZO-3 show no apparent phenotype. Here we show that Tjp3/Zo-3 is a component of tight junctions present in the enveloping cell layer of zebrafish embryos. Silencing tjp3/zo-3 using morpholinos leads to edema, loss of blood circulation and tail fin malformations in the embryos. The ultrastructure of tight junctions of the enveloping cell layer is disrupted, without affecting the asymmetric distribution of plasma membrane proteins. Morphants show a loss of the epidermal barrier, as assessed by an increased permeability of the enveloping cell layer to low molecular weight tracers and a higher sensitivity of the embryos to osmotic stress. Subjecting wild-type embryos to osmotic stress mimicks the morphant phenotype, consistent with the phenotype being a direct consequence of failed osmoregulation. Thus, Tjp3/Zo-3 is critical for barrier function of the enveloping cell layer and osmoregulation in early stages of zebrafish development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号