首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor–ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs.  相似文献   

2.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

3.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

4.
Sprouty proteins are recently identified receptor tyrosine kinase (RTK) inhibitors potentially involved in many developmental processes. Here, we report that Sprouty proteins become tyrosine phosphorylated after growth factor treatment. We identified Tyr55 as a key residue for Sprouty2 phosphorylation and showed that phosphorylation was required for Sprouty2 to inhibit RTK signaling, because a mutant Sprouty2 lacking Tyr55 augmented signaling. We found that tyrosine phosphorylation of Sprouty2 affected neither its subcellular localization nor its interaction with Grb2, FRS2/SNT, or other Sprouty proteins. In contrast, Sprouty2 tyrosine phosphorylation was necessary for its binding to the Src homology 2-like domain of c-Cbl after fibroblast growth factor (FGF) stimulation. To determine whether c-Cbl was required for Sprouty2-dependent cellular events, Sprouty2 was introduced into c-Cbl-wild-type and -null fibroblasts. Sprouty2 efficiently inhibited FGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 in c-Cbl-null fibroblasts, thus indicating that the FGF-dependent binding of c-Cbl to Sprouty2 was dispensable for its inhibitory activity. However, c-Cbl mediates polyubiquitylation/proteasomal degradation of Sprouty2 in response to FGF. Last, using Src-family pharmacological inhibitors and dominant-negative Src, we showed that a Src-like kinase was required for tyrosine phosphorylation of Sprouty2 by growth factors. Thus, these data highlight a novel negative and positive regulatory loop that allows for the controlled, homeostatic inhibition of RTK signaling.  相似文献   

5.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.  相似文献   

6.
Ligand binding to receptor tyrosine kinases (RTKs) regulates receptor dimerization and activation of the kinase domain. To examine the role of the transmembrane domain in regulation of RTK activation, we have exploited a simplified transmembrane motif, [VVVEVVV](n), previously shown to activate the Neu receptor. Here we demonstrate rotational linkage of the transmembrane domain with the kinase domain, as evidenced by a periodic activation of Neu as the dimerization motif is shifted across the transmembrane domain. These results indicate that activation requires a specific orientation of the kinase domains with respect to each other. Results obtained with platelet-derived growth factor receptor-beta suggest that this rotational linkage of the transmembrane domain to the kinase domain may be a general feature of RTKs. These observations suggest that activating mutations in RTK transmembrane and juxtamembrane domains will be limited to those residues that position the kinase domains in an allowed rotational conformation.  相似文献   

7.
The WW domain: linking cell signalling to the membrane cytoskeleton.   总被引:7,自引:0,他引:7  
The WW domain is one of the smallest yet most versatile protein-protein interaction modules. The ability of this simple domain to interact with a number of proline-containing ligands has resulted in a great deal of functional diversity. Most recently it has been shown that WW domain interactions can also be differentially regulated by tyrosine phosphorylation. Here we briefly review WW domain ligands and structure in comparison to SH3 domain ligands and structure and discuss recent findings with regard to the regulation of WW domain interactions by phosphorylation. In particular we describe the potential for differential binding of the b-dystroglycan WW domain ligand by dystrophin or caveolin-3 in skeletal muscle and show how this could act as a switch to alter the relative affinity of the muscle dystroglycan complex for caveolin-3 or dystrophin and utrophin.  相似文献   

8.
A function-structure model for NGF-activated TRK.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mechanisms regulating transit of receptor tyrosine kinases (RTKs) from inactive to active states are incompletely described, but require autophosphorylation of tyrosine(s) within a kinase domain 'activation loop'. Here, we employ functional biological assays with mutated TRK receptors to assess a 'switch' model for RTK activation. In this model: (i) ligand binding stimulates activation loop tyrosine phosphorylation; (ii) these phosphotyrosines form specific charge pairs with nearby basic residues; and (iii) the charge pairs stabilize a functionally active conformation in which the activation loop is restrained from blocking access to the kinase catalytic core. Our findings both support this model and identify residues that form specific charge pairs with each of the three TRK activation loop phosphotyrosines.  相似文献   

9.
Protein phosphorylation or dephosphorylation is the most important regulatory switch of signal transduction contributing to control of cell proliferation. The reversibility of phosphorylation and dephosphorylation is due to the activities of kinases and phosphatase, which determine protein phosphorylation level of cell under different physiological and pathological conditions. Receptor tyrosine kinase (RTK) mediated cellular signaling is precisely coordinated and tightly controlled in normal cells which ensures regulated mitosis. Deregulation of RTK signaling resulting in aberrant activation in RTKs leads to malignant transformation. Queuine is one of the modified base of tRNA which participates in down regulation of tyrosine kinase activity. The guanine analogue queuine is a nutrient factor to eukaryotes and occurs as free base or modified nucleoside queuosine into the first anticodon position of specific tRNAs. The tRNAs are often queuine deficient in cancer and fast proliferating tissues. The present study is aimed to investigate queuine mediated inhibition in phosphorylation of tyrosine phosphorylated proteins in lymphoma bearing mouse. The result shows high level of cytosolic and membrane associated tyrosine phosphoprotein in DLAT cancerous mouse liver compared to normal. Queuine treatments down regulate the level of tyrosine phosphoproteins, which suggests that queuine is involved in regulation of mitotic signaling pathways.  相似文献   

10.
Shen Y  Naujokas M  Park M  Ireton K 《Cell》2000,103(3):501-510
The Listeria monocytogenes surface protein InlB promotes bacterial entry into mammalian cells. Here, we identify a cellular surface receptor required for InlB-mediated entry. Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF). Like HGF, InlB binds to the extracellular domain of Met and induces "scattering" of epithelial cells. Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes. InlB is a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.  相似文献   

11.
We investigated mechanisms for inducing focal adhesion kinase (FAK) tyrosine phosphorylation and their ability to trigger MAP kinase signaling using transmembrane chimeras that localize FAK and its mutants to the plasma membrane. We tested whether tyrosine phosphorylation was triggered by FAK transmembrane aggregation using antibodies against the chimeric extracellular domain. Experimental clustering of chimeras containing integrin beta cytoplasmic domains or FAK induced FAK tyrosine phosphorylation and trans-phosphorylation of endogenous FAK, as well as strong ERK activation. Next, we examined whether lower-order molecular proximity, namely dimerization, could regulate FAK tyrosine phosphorylation. We found that even relatively low-affinity FAK dimerization (K(d)=3.9 x 10(-5) M), in either of two different orientations, could induce FAK tyrosine phosphorylation. However, this cytoplasmic FAK dimerization could not induce MAP kinase activation or trans-phosphorylation of endogenous FAK. We conclude that dimerization of FAK is sufficient to induce its tyrosine phosphorylation, but that higher-order molecular proximity (clustering) at the cell membrane is apparently needed for additional biochemical events. This study identifies a proximity mechanism for regulating the initiation of FAK-mediated biochemical signaling.  相似文献   

12.
Discoidin domain receptor 1 (DDR1) is a transmembrane receptor tyrosine kinase activated by triple-helical collagen. So far six different isoforms of DDR1 have been described. Aberrant expression and signaling of DDR1 have been implicated in several human diseases linked to accelerated matrix degradation and remodeling, including tumor invasion, atherosclerosis, and lung fibrosis. Here we show that DDR1 exists as a disulfide-linked dimer in transfected as well as endogenously expressing cells. This dimer formation occurred irrespective of its kinase domain, as dimers were also found for the truncated DDR1d isoform. A deletion analysis of the extracellular domain showed that DDR1 mutants lacking the stalk region failed to form dimers, whereas deletion of the discoidin domain did not prevent dimerization. Point mutagenesis within the stalk region suggested that cysteines 303 and 348 are necessary for dimerization, collagen binding, and activation of kinase function. The identification of DDR1 dimers provides new insights into the molecular structure of receptor tyrosine kinases and suggests distinct signaling mechanisms of each receptor subfamily.  相似文献   

13.
The Src family kinases possess two sites of tyrosine phosphorylation that are critical to the regulation of kinase activity. Autophosphorylation on an activation loop tyrosine residue (Tyr 416 in commonly used chicken c-Src numbering) increases catalytic activity, while phosphorylation of a C-terminal tyrosine (Tyr 527 in c-Src) inhibits activity. The latter modification is achieved by the tyrosine kinase Csk (C-terminal Src Kinase), but the complete inactivation of the Src family kinases also requires the dephosphorylation of the activation loop tyrosine. The SH3 domain of Csk recruits the tyrosine phosphatase PEP, allowing for the coordinated inhibition of Src family kinase activity. We have discovered that Csk forms homodimers through interactions mediated by the SH3 domain in a manner that buries the recognition surface for SH3 ligands. The formation of this dimer would therefore block the recruitment of tyrosine phosphatases and may have important implications for the regulation of Src kinase activity.  相似文献   

14.
The epidermal growth factor (EGF)-like family of growth factors elicits cellular responses by stimulating the dimerization, autophosphorylation, and tyrosine kinase activities of the ErbB family of receptor tyrosine kinases. Although several different EGF-like ligands are capable of binding to a single ErbB family member, it is generally thought that the biological and biochemical responses of a single receptor dimer to different ligands are indistinguishable. To test whether an ErbB receptor dimer is capable of discriminating among ligands we have examined the effect of four EGF-like growth factors on signaling through the ErbB4 receptor homodimer in CEM/HER4 cells, a transfected human T cell line ectopically expressing ErbB4 in an ErbB-null background. Despite stimulating similar levels of gross receptor tyrosine phosphorylation, the EGF-like growth factors betacellulin, neuregulin-1beta, neuregulin-2beta, and neuregulin-3 exhibited different biological potencies in a cellular growth assay. Moreover, the different ligands induced different patterns of recruitment of intracellular signaling proteins to the activated receptor and induced differential usage of intracellular kinase signaling cascades. Finally, two-dimensional phosphopeptide mapping of ligand-stimulated ErbB4 revealed that the different growth factors induce different patterns of receptor tyrosine phosphorylation. These results indicate that ErbB4 activation by growth factors is not generic and suggest that individual ErbB receptors can discriminate between different EGF-like ligands within the context of a single receptor dimer. More generally, our observations significantly modify our understanding of signaling through receptor tyrosine kinases and point to a number of possible models for ligand-mediated signal diversification.  相似文献   

15.
促红细胞生成素产生肝细胞受体(Eph receptor) 是受体酪氨酸激酶(RTK)家族中最大的亚家族,其介导的双向信号传导对细胞的形态、黏附、运动、增殖、生存及分化都有重要的调控作用。EphA2是Eph受体家族中一个被广泛研究的重要亚型,在白内障和乳腺癌等病理发生过程中发挥了重要作用。既往研究发现:EphA2受体的激酶结构域可结合细胞膜,其激酶活性受磷脂膜的调控,但是相邻的SAM结构域对激酶结构域与脂膜的相互作用以及激酶活性的影响尚不清楚。在此项研究中,通过与磷酸酶PTP1B1-301活性片段共表达的方式,表达、纯化了EphA2受体的胞内段激酶-SAM串联结构域,通过比较胞内段激酶-SAM串联结构域与单独激酶结构域的脂质体结合能力,以及测定对应的激酶活性,发现:EphA2受体胞内段的SAM结构域使其激酶结构域与脂质体(4 mg/mL)的结合能力增强约6倍(P<0.001);磷酸化后的EphA2胞内段激酶-SAM串联结构域结合脂质体(4 mg/mL)的能力比非磷酸化的胞内段激酶-SAM串联结构域提高2.5倍(P<0.05);而结合脂质体后,激酶结构域的激酶活性也被进一步提高,从而形成正反馈。综上所述,本研究的发现提示:EphA2胞内段的酪氨酸激酶结构域与相邻的SAM结构域可形成一个完整的结构功能单位,其激酶活性和脂质体结合能力与单独的激酶结构域相比都形成了明显的差异,我们的这一发现对进一步理解Eph受体家族其他亚型的激酶结构域的活性调控提供了参考与思路。  相似文献   

16.
Drosophila Corkscrew protein and its vertebrate ortholog SHP-2 (now known as Ptpn11) positively modulate receptor tyrosine kinase (RTK) signaling during development, but how these tyrosine phosphatases promote tyrosine kinase signaling is not well understood. Sprouty proteins are tyrosine-phosphorylated RTK feedback inhibitors, but their regulation and mechanism of action are also poorly understood. Here, we show that Corkscrew/SHP-2 proteins control Sprouty phosphorylation and function. Genetic experiments demonstrate that Corkscrew/SHP-2 and Sprouty proteins have opposite effects on RTK-mediated developmental events in Drosophila and an RTK signaling process in cultured mammalian cells, and the genes display dose-sensitive genetic interactions. In cultured cells, inactivation of SHP-2 increases phosphorylation on the critical tyrosine of Sprouty 1. SHP-2 associates in a complex with Sprouty 1 in cultured cells and in vitro, and a purified SHP-2 protein dephosphorylates the critical tyrosine of Sprouty 1. Substrate-trapping forms of Corkscrew bind Sprouty in cultured Drosophila cells and the developing eye. These results identify Sprouty proteins as in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases and show how Corkscrew/SHP-2 proteins can promote RTK signaling by inactivating a feedback inhibitor. We propose that this double-negative feedback circuit shapes the output profile of RTK signaling events.  相似文献   

17.
In this study, we demonstrated that the specific inhibitors of the Na+/K+/Cl- cotransporter (NKCC1), bumetanide and furosemide, inhibited extracellular regulated kinase (ERK) phosphorylation in Balb/c 3T3 fibroblasts, stimulated with a variety of mitogens. In addition to fibroblast growth factor (FGF) shown before, the various mitogens tested in the present study (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), insulin, thrombin, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)). Enter, the Ras/Raf/MEK/ERK cascade via different growth factors receptors and through one of the two main routes. The results of the present study provide evidence that have led us to conclude that the target protein which is controlled by the Na+/K+/Cl- cotransporter, is downstream of tyrosine kinase receptors, as well as of the G-protein-coupled receptor (GPCR). Several additional lines of evidence supported the above conclusion: (i) furosemide inhibits phosphorylation of MAPK kinase (MEK) induced by receptor tyrosine kinase (RTK) ligands, such as PDGF, FGF, and EGF. (ii) Furosemide also inhibited ERK phosphorylation, induced by thrombin, a GPCR. (iii) Furosemide inhibited MEK and ERK phosphorylation even when ERK phosphorylation was induced by direct activation of protein kinase C (PKC) by TPA, which bypasses early steps of the mitogenic cascade. In addition, we found that furosemide did not affect PKC phosphorylation induced directly by TPA. Taken together, the results of the present study indicate that the signal transduction protein, controlled by the Na+/K+/Cl- cotransporter, must be downstream of the PKC, and at/or upstream to MEK in the Ras/Raf/MEK/ERK cascade.  相似文献   

18.
The epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinase (RTK) superfamily and is involved in regulating cell proliferation, differentiation and motility. Growth factor binding induces receptor oligomerization at the plasma membrane, which leads to activation of the intrinsic RTK activity and trans-phosphorylation of tyrosine residues in the intracellular part of the receptor. These residues are docking sites for proteins containing Src homology domain 2 and phosphotyrosine-binding domains that relay the signal inside the cell. In response to EGF attached to beads, lateral propagation of EGFR phosphorylation occurs at the plasma membrane, representing an early amplification step in EGFR signalling. Here we have investigated an underlying reaction network that couples RTK activity to protein tyrosine phosphatase (PTP) inhibition by reactive oxygen species. Mathematical analysis of the chemical kinetic equations of the minimal reaction network detects general properties of this system that can be observed experimentally by imaging EGFR phosphorylation in cells. The existence of a bistable state in this reaction network explains a threshold response and how a high proportion of phosphorylated receptors can be maintained in plasma membrane regions that are not exposed to ligand.  相似文献   

19.
Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase   总被引:1,自引:0,他引:1  
Ligand-induced down-regulation by the ubiquitin-protein ligases, c-Cbl and Cbl-b, controls signaling downstream from many receptor-tyrosine kinases (RTK). Cbl proteins bind to phosphotyrosine residues on activated RTKs to affect ligand-dependent ubiquitylation of these receptors targeting them for degradation in the lysosome. Both c-Cbl and Cbl-b contain a ubiquitin-associated (UBA) domain, which is important for Cbl dimerization and tyrosine phosphorylation; however, the mechanism of UBA-mediated dimerization and its requirement for Cbl biological activity is unclear. Here, we report the crystal structure of the UBA domain of c-Cbl refined to 2.1-A resolution. The structure reveals the protein is a symmetric dimer tightly packed along a large hydrophobic surface formed by helices 2 and 3. NMR chemical shift mapping reveals heterodimerization can occur with the related Cbl-b UBA domain via the same surface employed for homodimerization. Disruption of c-Cbl dimerization by site-directed mutagenesis impairs c-Cbl phosphorylation following activation of the Met/hepatocyte growth factor RTK and c-Cbl-dependent ubiquitination of Met. This provides direct evidence for a role of Cbl dimerization in terminating signaling following activation of RTKs.  相似文献   

20.
Developing small molecule agonistic ligands for tyrosine kinase receptors has been difficult, and it is generally thought that such ligands require bivalency. Moreover, multisubunit receptors are difficult to target, because each subunit contributes to ligand affinity, and each subunit may have distinct and sometimes opposing functions. Here, the nerve growth factor receptor subunits p75 and the tyrosine kinase TrkA were studied using artificial ligands that bind specifically to their extracellular domain. Bivalent TrkA ligands afford robust signals. However, genuine monomeric and monovalent TrkA ligands afford partial agonism, activate the tyrosine kinase activity, cause receptor internalization, and induce survival and differentiation in cell lines and primary neurons. Monomeric and monovalent TrkA ligands can synergize with ligands that bind the p75 subunit. However, the p75 ligands used in this study must be bivalent, and monovalent p75 ligands have no effect. These findings will be useful in designing and developing screens of small molecules selective for tyrosine kinase receptors and indicate that strategies for designing agonists of multisubunit receptors require consideration of the role of each subunit. Last, the strategy of using anti-receptor mAbs and small molecule hormone mimics as receptor ligands could be applied to the study of many other heteromeric cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号