首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss in this review recent studies using the worm Caenorhabditis elegans to decipher endocytic trafficking in a multicellular organism. Recent advances, including in vivo assay systems, new genetic screens, comparative functional analysis of conserved proteins, and RNA-mediated interference (RNAi) in C. elegans, are being used to study the functions of known membrane trafficking factors and to identify new ones. The ability to monitor endocytosis in vivo in worms allows one to test current endocytosis models and to demonstrate the physiological significance of factors identified by genetic and biochemical methods. The available human genome sequence facilitates comparative studies where human homologs of new factors identified in C. elegans can be quickly assayed for similar function using traditional cell biological methods in mammalian cell systems. New studies in C. elegans have used a combination of these techniques to reveal novel metazoan-specific trafficking factors required for endocytosis. Many more metazoan-specific trafficking factors and insights into the mechanisms of endocytosis are likely to be uncovered by analysis in C. elegans .  相似文献   

2.
Recent advances in optical methods have catalyzed a detailed study of individual visualized synapses in several model systems. Quantal events at small central synapses, as well as single granule exocytosis in secretory cells, have been detected using quantitative fluorescence imaging. Sensitive detection of exocytosis and endocytosis at individual synapses has advanced our knowledge of synaptic vesicle trafficking.  相似文献   

3.
C Zhu  SL Das  T Baumgart 《Biophysical journal》2012,102(8):1837-1845
The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin function, experimental measurements need to be compared to quantitative theoretical models. We present measurements of curvature sorting and curvature generation of the endophilin A1 N-BAR domain on tubular membranes pulled from giant unilamellar vesicles. At low concentration, endophilin functions primarily as a membrane curvature sensor; at high concentrations, it also generates curvature. We determine the spontaneous curvature induced by endophilin and observe sigmoidal curvature/composition coupling isotherms that saturate at high membrane tensions and protein solution concentrations. The observation of saturation is supported by a strong dependence of lateral diffusion coefficients on protein density on the tether membrane. We develop a nonlinear curvature/composition coupling model that captures our experimental observations. Our model predicts a curvature-induced phase transition among two states with varying protein density and membrane curvature. This transition could act as a switch during endocytosis.  相似文献   

4.
In secretory cells, exocytosis and compensatory endocytosis are tightly coupled membrane trafficking processes that control the surface area and composition of the plasma membrane. While exocytic and endocytic processes have been studied independently in great detail, at present there is much interest in understanding the mode of their coupling. This review discusses emerging insights into the coupling of these processes, both in the chemical synapses of neurons and in non-neuronal cells.  相似文献   

5.
Our understanding of the role of membrane tension in the field of membrane biophysics is rapidly evolving from a passive construct to an active player in a variety of cellular phenomena. Membrane tension has been shown to be a key regulator of many cellular processes ranging including trafficking, ion channel activation, and the invasion of red blood cells by malaria parasites. Recent experimental advances in cells, including the development of a fluorescent tension reporter, have shown that membrane tension is heterogeneous. In this mini-review, I summarize the recent advances in membrane tension measurements and discuss the contributions from different cellular constituents such as the cortical cytoskeleton. Then, I will explore how these different complexities can be considered in biophysical models of different scales. Finally, I will elaborate on the need for iterations between models and experiments as technologies in both fields advance to enable us to obtain critical insights into the physiological role of membrane tension as a critical component of mechanotransduction.  相似文献   

6.
7.
Synucleins and apolipoproteins have been implicated in a number of membrane and lipid trafficking events. Lipid interaction for both types of proteins is mediated by 11 amino acid repeats that form amphipathic helices. This similarity suggests that synucleins and apolipoproteins might have comparable effects on lipid membranes, but this has not been shown directly. Here, we find that α-synuclein, β-synuclein, and apolipoprotein A-1 have the conserved functional ability to induce membrane curvature and to convert large vesicles into highly curved membrane tubules and vesicles. The resulting structures are morphologically similar to those generated by amphiphysin, a curvature-inducing protein involved in endocytosis. Unlike amphiphysin, however, synucleins and apolipoproteins do not require any scaffolding domains and curvature induction is mediated by the membrane insertion and wedging of amphipathic helices alone. Moreover, we frequently observed that α-synuclein caused membrane structures that had the appearance of nascent budding vesicles. The ability to function as a minimal machinery for vesicle budding agrees well with recent findings that α-synuclein plays a role in vesicle trafficking and enhances endocytosis. Induction of membrane curvature must be under strict regulation in vivo; however, as we find it can also cause disruption of membrane integrity. Because the degree of membrane curvature induction depends on the concerted action of multiple proteins, controlling the local protein density of tubulating proteins may be important. How cellular safeguarding mechanisms prevent such potentially toxic events and whether they go awry in disease remains to be determined.  相似文献   

8.
The sorting of lipids and proteins in cellular trafficking pathways is a process of central importance in maintaining compartmentalization in eukaryotic cells. However, the mechanisms behind these sorting phenomena are currently far from being understood. Among several mechanistic suggestions, membrane curvature has been invoked as a means to segregate lipids and proteins in cellular sorting centers. To assess this hypothesis, we investigate the sorting of lipid analog dye trace components between highly curved tubular membranes and essentially flat membranes of giant unilamellar vesicles. Our experimental findings indicate that intracellular lipid sorting, contrary to frequent assumptions, is unlikely to occur by lipids fitting into membrane regions of appropriate curvature. This observation is explained in the framework of statistical mechanical lattice models that show that entropy, rather than curvature energy, dominates lipid distribution in the absence of strongly preferential lateral intermolecular interactions. Combined with previous findings of curvature induced phase segregation, we conclude that lipid cooperativity is required to enable efficient sorting. In contrast to lipid analog dyes, the peripheral membrane binding protein Cholera toxin subunit B is effectively curvature-sorted. The sorting of Cholera toxin subunit B is rationalized by statistical models. We discuss the implications of our findings for intracellular sorting mechanisms.  相似文献   

9.
Cell division involves a vast remodelling of cellular membranes. This is most apparent for the cell surface, but it is also true for internal vesicular organelles such as the Golgi apparatus. While the contribution of endocytosis to membrane trafficking and signal processing in interphase cells is well established, the role of the endocytic system in cell division has long been neglected. A number of recent studies have however shed novel light on this issue. Here, we review findings supporting the existence of two important links between endocytosis and mitosis: First, endocytic trafficking is essential to reshape the plasma membrane during cell division. Second, cell division affects the partitioning, the trafficking and hence the activity of the signalling molecules that are contained within endocytic compartments.  相似文献   

10.
Hair cell afferent synapses   总被引:1,自引:0,他引:1  
This review will cover advances in the study of hair cell afferent synaptic function occurring between 2005 and 2008. During this time, capacitance measurements of vesicular fusion have continued to be refined, optical methods have added insights regarding vesicle trafficking, and paired intracellular recordings have established the transfer function of the afferent synapse at high resolution. Further, genes have been identified with forms of deafness known as auditory neuropathy, and their role in afferent signaling explored in mouse models. With these advances, our view of the hair cell afferent synapse has continued to be refined, and surprising properties have been revealed that emphasize the unique role of this structure in neural function.  相似文献   

11.
Cell-penetrating peptide-mediated delivery of phosphorodiamidate morpholino oligomers (PMOs) has shown great promise for exon-skipping therapy of Duchenne Muscular Dystrophy (DMD). Pip6a-PMO, a recently developed conjugate, is particularly efficient in a murine DMD model, although mechanisms responsible for its increased biological activity have not been studied. Here, we evaluate the cellular trafficking and the biological activity of Pip6a-PMO in skeletal muscle cells and primary cardiomyocytes. Our results indicate that Pip6a-PMO is taken up in the skeletal muscle cells by an energy- and caveolae-mediated endocytosis. Interestingly, its cellular distribution is different in undifferentiated and differentiated skeletal muscle cells (vesicular versus nuclear). Likewise, Pip6a-PMO mainly accumulates in cytoplasmic vesicles in primary cardiomyocytes, in which clathrin-mediated endocytosis seems to be the pre-dominant uptake pathway. These differences in cellular trafficking correspond well with the exon-skipping data, with higher activity in myotubes than in myoblasts or cardiomyocytes. These differences in cellular trafficking thus provide a possible mechanistic explanation for the variations in exon-skipping activity and restoration of dystrophin protein in heart muscle compared with skeletal muscle tissues in DMD models. Overall, Pip6a-PMO appears as the most efficient conjugate to date (low nanomolar EC50), even if limitations remain from endosomal escape.  相似文献   

12.
The glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPc) has a fundamental role in prion diseases. Intracellular trafficking of PrPc is important in the generation of protease resistant PrP species but little is known of how endocytosis affects PrPc function. Here, we discuss recent experiments that have illuminated how PrPc is internalized and what are the possible destinations taken by the protein. Contrary to what would be expected for a GPI-anchored protein there is increasing evidence that clathrin-mediated endocytosis and classical endocytic organelles participate in PrPc trafficking. Moreover, the N-terminal domain of PrPc may be involved in sorting events that can direct the protein during its intracellular journey. Indeed, the concept that the GPI-anchor determines PrPc trafficking has been challenged. Cellular signaling can be triggered or be regulated by PrPc and we suggest that endocytosis of PrPc may influence signaling in several ways. Definition of the processes that participate in PrPc endocytosis and intracellular trafficking can have a major impact on our understanding of the mechanisms involved in PrPc function and conversion to protease resistant conformations.  相似文献   

13.
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.  相似文献   

14.
Maturation is a critical transition in the life cycle. Recent models have used retrospective analyses of patterns of variation in age and size at maturity in an attempt to understand the mechanisms responsible for generating phenotypic variation in maturation. Empirical work has revealed greater complexity in the biology of maturation than has been incorporated in current models, and has cast doubt on some of the assumptions and conclusions of the models. Recent insights from experimental work, coupled with theoretical advances for the analysis of growth, size and other complex characters, have great potential to elucidate evolution of maturation and how adaptive maturation phenotypes are achieved by real organisms.  相似文献   

15.
Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless, our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as "free" molecules or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review, we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic.  相似文献   

16.
Nanoscale membrane curvature in cells is critical for endocytosis/exocytosis and membrane trafficking. However, the biophysical ramifications of nanoscale membrane curvature on the behavior of lipids remain poorly understood. Here, we created an experimental model system of membrane curvature at a physiologically-relevant scale and obtained nanoscopic information on single-lipid distributions and dynamics. Supported lipid bilayers were created over 50 and 70 nm radius nanoparticles to create membrane buds. Single-molecule localization microscopy was performed with diverse mixtures of fluorescent and non-fluorescent lipids. Variations in lipid acyl tales length, saturation, head-group, and fluorescent labeling strategy were tested while maintaining a single fluid lipid phase throughout the membrane. Monte Carlo simulations were used to fit our experimental results and quantify the effects of curvature on the lipid diffusion and sorting. Whereas varying the composition of the non-fluorescent lipids yielded minimal changes to the curvature effects, the labeling strategy of the fluorescent lipids yielded highly varying effects of curvature. Most conditions yield single-population Brownian diffusion throughout the membrane; however, curvature-induced lipid sorting, slowing, and aggregation were observed in some conditions. Head-group labeled lipids such as DPPE-Texas Red and POPE-Rhodamine diffused >2.4× slower on the curved vs. the planar membranes; tail-labeled lipids such as NBD-PPC, TopFluor-PPC, and TopFluor-PIP2, as well as DiIC12 and DiIC18 displayed no significant changes in diffusion due to the membrane curvature. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.  相似文献   

17.
The sculpting of membranes into dynamic, curved shapes is central to intracellular cargo trafficking. Though the generation of membrane curvature during trafficking necessarily involves both lipids and membrane-associated proteins, current mechanistic views focus primarily on the formation of rigid cages and curved scaffolds by protein assemblies. Here we report on a different mechanism for the control of membrane deformation, unrelated to the imposition of predefined curvature, involving modulation of membrane material properties: Sar1, a GTPase that regulates vesicle trafficking from the endoplasmic reticulum, lowers the rigidity of the lipid bilayer membrane to which it binds. In vitro assays in which optically trapped microspheres create controlled membrane deformations revealed a monotonic decline in bending modulus as a function of Sar1 concentration, down to nearly zero rigidity, indicating a dramatic lowering of the energetic cost of curvature generation. This is the first demonstration that a vesicle trafficking protein lowers the rigidity of its target membrane, leading to a new conceptual framework for vesicle biogenesis.  相似文献   

18.
Intracellular trafficking requires extensive changes in membrane morphology. Cells use several distinct molecular factors and physical cues to remodel membranes. Here, we highlight recent advances in identifying the biophysical mechanisms of membrane curvature generation. In particular, we focus on the cooperation of molecular and physical drivers of membrane bending during three stages of vesiculation: budding, cargo selection, and scission. Taken together, the studies reviewed here emphasize that, rather than a single dominant mechanism, several mechanisms typically work in parallel during each step of membrane remodeling. Important challenges for the future of this field are to understand how multiple mechanisms work together synergistically and how a series of stochastic events can be combined to achieve a deterministic result—assembly of the trafficking vesicle.  相似文献   

19.
The focus of this review is the regulated trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in distal compartments of the protein secretory pathway and the question of how changes in CFTR cellular distribution may impact on the functions of polarized epithelial cells. We summarize data concerning the cellular localization and activity of CFTR and attempt to synthesize often conflicting results from functional studies of regulated endocytosis and exocytosis in CFTR-expressing cells. In some instances, findings that are inconsistent with regulated CFTR trafficking may result from the use of overexpression systems or nonphysiological experimental conditions. Nevertheless, judging from data on other transporters, an appropriate cellular context is necessary to support regulated CFTR trafficking, even in epithelial cells. The discovery that disease mutations can influence CFTR trafficking in distal secretory and recycling compartments provides support for the concept that regulated CFTR recycling contributes to normal epithelial function, including the control of apical CFTR channel density and epithelial protein secretion. Finally, we propose molecular mechanisms for regulated CFTR endocytosis and exocytosis that are based on CFTR interactions with other proteins, particularly those whose primary function is membrane trafficking. These models provide testable hypotheses that may lead to elucidation of CFTR trafficking mechanisms and permit their experimental manipulation in polarized epithelial cells.  相似文献   

20.
Membrane proteins play a crucial role in various cellular processes and are essential components of cell membranes. Computational methods have emerged as a powerful tool for studying membrane proteins due to their complex structures and properties that make them difficult to analyze experimentally. Traditional features for protein sequence analysis based on amino acid types, composition, and pair composition have limitations in capturing higher-order sequence patterns. Recently, multiple sequence alignment (MSA) and pre-trained language models (PLMs) have been used to generate features from protein sequences. However, the significant computational resources required for MSA-based features generation can be a major bottleneck for many applications. Several methods and tools have been developed to accelerate the generation of MSAs and reduce their computational cost, including heuristics and approximate algorithms. Additionally, the use of PLMs such as BERT has shown great potential in generating informative embeddings for protein sequence analysis. In this review, we provide an overview of traditional and more recent methods for generating features from protein sequences, with a particular focus on MSAs and PLMs. We highlight the advantages and limitations of these approaches and discuss the methods and tools developed to address the computational challenges associated with features generation. Overall, the advancements in computational methods and tools provide a promising avenue for gaining deeper insights into the function and properties of membrane proteins, which can have significant implications in drug discovery and personalized medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号