首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
PUF proteins, a family of RNA-binding proteins, interact with the 3' untranslated regions (UTRs) of specific mRNAs to control their translation and stability. PUF protein action is commonly correlated with removal of the poly(A) tail of target mRNAs. Here, we focus on how PUF proteins enhance deadenylation and mRNA decay. We show that a yeast PUF protein physically binds Pop2p, which is a component of the Ccr4p-Pop2p-Not deadenylase complex, and that Pop2p is required for PUF repression activity. By binding Pop2p, the PUF protein simultaneously recruits the Ccr4p deadenylase and two other enzymes involved in mRNA regulation, Dcp1p and Dhh1p. We reconstitute regulated deadenylation in vitro and demonstrate that the PUF-Pop2p interaction is conserved in yeast, worms and humans. We suggest that the PUF-Pop2p interaction underlies regulated deadenylation, mRNA decay and repression by PUF proteins.  相似文献   

3.
4.
5.
6.
Tristetraprolin (TTP) regulates the expression of AU-rich element-containing mRNAs through promoting the degradation and repressing the translation of target mRNA. While the mechanism for promoting target mRNA degradation has been extensively studied, the mechanism underlying translational repression is not well established. Here, we show that TTP recruits eukaryotic initiation factor 4E2 (eIF4E2) to repress target mRNA translation. TTP interacted with eIF4E2 but not with eIF4E. Overexpression of eIF4E2 enhanced TTP-mediated translational repression, and downregulation of endogenous eIF4E2 or overexpression of a truncation mutant of eIF4E2 impaired TTP-mediated translational repression. Overexpression of an eIF4E2 mutant that lost the cap-binding activity also impaired TTP''s activity, suggesting that the cap-binding activity of eIF4E2 is important in TTP-mediated translational repression. We further show that TTP promoted eIF4E2 binding to target mRNA. These results imply that TTP recruits eIF4E2 to compete with eIF4E to repress the translation of target mRNA. This notion is supported by the finding that downregulation of endogenous eIF4E2 increased the production of tumor necrosis factor alpha (TNF-α) protein without affecting the mRNA levels in THP-1 cells. Collectively, these results uncover a novel mechanism by which TTP represses target mRNA translation.  相似文献   

7.
Previously, we reported that in clam oocytes, cytoplasmic polyadenylation element-binding protein (CPEB) co-immunoprecipitates with p47, a member of the highly conserved RCK family of RNA helicases which includes Drosophila Me31B and Saccharomyces cerevisiae Dhh1. Xp54, the Xenopus homologue, with helicase activity, is a component of stored mRNP. In tethered function assays in Xenopus oocytes, we showed that MS2–Xp54 represses the translation of non-adenylated firefly luciferase mRNAs and that mutations in two core helicase motifs, DEAD and HRIGR, surprisingly, activated translation. Here we show that wild-type MS2–Xp54 tethered to the reporter mRNA 3′-untranslated region (UTR) represses translation in both oocytes and eggs in an RNA-dependent complex with endogenous Xp54. Injection of mutant helicases or adenylated reporter mRNA abrogates this association. Thus Xp54 oligomerization is a hallmark of translational repression. Xp54 complexes, which also contain CPEB and eIF4E in oocytes, change during meiotic maturation. In eggs, CPEB is degraded and, while eIF4E still interacts with Xp54, this interaction becomes RNA dependent. Supporting evidence for RNA-mediated oligomerization of endogenous Xp54, and RNA-independent association with CPEB and eIF4E in oocytes was obtained by gel filtration. Altogether, our data are consistent with a model in which the active form of the Xp54 RNA helicase is an oligomer in vivo which, when tethered, via either MS2 or CPEB to the 3′UTR, represses mRNA translation, possibly by sequestering eIF4E from the translational machinery.  相似文献   

8.
Drosophila melanogaster Pumilio is an RNA-binding protein that potently represses specific mRNAs. In developing embryos, Pumilio regulates a key morphogen, Hunchback, in collaboration with the cofactor Nanos. To investigate repression by Pumilio and Nanos, we created cell-based assays and found that Pumilio inhibits translation and enhances mRNA decay independent of Nanos. Nanos robustly stimulates repression through interactions with the Pumilio RNA-binding domain. We programmed Pumilio to recognize a new binding site, which garners repression of new target mRNAs. We show that cofactors Brain Tumor and eIF4E Homologous Protein are not obligatory for Pumilio and Nanos activity. The conserved RNA-binding domain of Pumilio was thought to be sufficient for its function. Instead, we demonstrate that three unique domains in the N terminus of Pumilio possess the major repressive activity and can function autonomously. The N termini of insect and vertebrate Pumilio and Fem-3 binding factors (PUFs) are related, and we show that corresponding regions of human PUM1 and PUM2 have repressive activity. Other PUF proteins lack these repression domains. Our findings suggest that PUF proteins have evolved new regulatory functions through protein sequences appended to their conserved PUF repeat RNA-binding domains.  相似文献   

9.
PUF proteins are a conserved family of eukaryotic RNA-binding proteins that regulate specific mRNAs: they control many processes including stem cell proliferation, fertility, and memory formation. PUFs repress protein expression from their target mRNAs but the mechanism by which they do so remains unclear, especially for humans. Humans possess two PUF proteins, PUM1 and PUM2, which exhibit similar RNA binding specificities. Here we report new insights into their regulatory activities and mechanisms of action. We developed functional assays to measure sequence-specific repression by PUM1 and PUM2. Both robustly inhibit translation and promote mRNA degradation. Purified PUM complexes were found to contain subunits of the CCR4-NOT (CNOT) complex, which contains multiple enzymes that catalyze mRNA deadenylation. PUMs interact with the CNOT deadenylase subunits in vitro. We used three approaches to determine the importance of deadenylases for PUM repression. First, dominant-negative mutants of CNOT7 and CNOT8 reduced PUM repression. Second, RNA interference depletion of the deadenylases alleviated PUM repression. Third, the poly(A) tail was necessary for maximal PUM repression. These findings demonstrate a conserved mechanism of PUF-mediated repression via direct recruitment of the CCR4-POP2-NOT deadenylase leading to translational inhibition and mRNA degradation. A second, deadenylation independent mechanism was revealed by the finding that PUMs repress an mRNA that lacks a poly(A) tail. Thus, human PUMs are repressors capable of deadenylation-dependent and -independent modes of repression.  相似文献   

10.
Non-sense-mediated mRNA decay (NMD) is a mechanism of translation-dependent mRNA surveillance in eukaryotes: it degrades mRNAs with premature termination codons (PTCs) and contributes to cellular homeostasis by downregulating a number of physiologically important mRNAs. In the NMD pathway, Upf proteins, a set of conserved factors of which Upf1 is the central regulator, recruit decay enzymes to promote RNA cleavage. In mammals, the degradation of PTC-containing mRNAs is triggered by the exon–junction complex (EJC) through binding of its constituents Upf2 and Upf3 to Upf1. The complex formed eventually induces translational repression and recruitment of decay enzymes. Mechanisms by which physiological mRNAs are targeted by the NMD machinery in the absence of an EJC have been described but still are discussed controversially. Here, we report that the DEAD box proteins Ddx5/p68 and its paralog Ddx17/p72 also bind the Upf complex by physical interaction with Upf3, thereby interfering with the binding of EJC. By activating the NMD machinery, Ddx5 is shown to regulate the expression of its own, Ddx17 and Smg5 mRNAs. For NMD triggering, the adenosine triphosphate-binding activity of Ddx5 and the 3′-untranslated region of substrate mRNAs are essential.  相似文献   

11.
The RNA helicase p54 (DDX6, Dhh1, Me31B, Cgh-1, RCK) is a prototypic component of P-(rocessing) bodies in cells ranging from yeast to human. Previously, we have shown that it is also a component of the large cytoplasmic polyadenylation element-binding protein translation repressor complex in Xenopus oocytes and that when tethered to the 3′ untranslated region, Xp54 represses reporter mRNA translation. Here, we examine the role of the p54 helicase activity in translational repression and in P-body formation. Mutagenesis of conserved p54 helicase motifs activates translation in the tethered function assay, reduces accumulation of p54 in P-bodies in HeLa cells, and inhibits its capacity to assemble P-bodies in p54-depleted cells. Similar results were obtained in four helicase motifs implicated in ATP binding and in coupling ATPase and RNA binding activities. This is accompanied by changes in the interaction of the mutant p54 with the oocyte repressor complex components. Surprisingly, the C-terminal D2 domain alone is sufficient for translational repression and complete accumulation in P-bodies, although it is deficient for P-body assembly. We propose a novel RNA helicase model, in which the D2 domain acts as a protein binding platform and the ATPase/helicase activity allows protein complex remodeling that dictates the balance between repressors and an activator of translation.  相似文献   

12.
The CCR4-CAF1-NOT complex is a major cytoplasmic deadenylation complex in yeast and mammals. This complex associates with RNA-binding proteins and microRNAs to repress translation of target mRNAs. We sought to determine how CCR4 and CAF1 participate in repression and control of maternal mRNAs using Xenopus laevis oocytes. We show that Xenopus CCR4 and CAF1 enzymes are active deadenylases and repress translation of an adenylated mRNA. CAF1 also represses translation independent of deadenylation. The deadenylation-independent repression requires a 5′ cap structure on the mRNA; however, deadenylation does not. We suggest that mere recruitment of CAF1 is sufficient for repression, independent of deadenylation.  相似文献   

13.
The poly(A)-binding protein (PABP), bound to the 3' poly(A) tail of eukaryotic mRNAs, plays critical roles in mRNA translation and stability. PABP autoregulates its synthesis by binding to a conserved A-rich sequence present in the 5'-untranslated region of PABP mRNA and repressing its translation. PABP is composed of two parts: the highly conserved N terminus, containing 4 RNA recognition motifs (RRMs) responsible for poly(A) and eIF4G binding; and the more variable C terminus, which includes the recently described PABC domain, and promotes intermolecular interaction between PABP molecules as well as cooperative binding to poly(A). Here we show that, in vitro, GST-PABP represses the translation of reporter mRNAs containing 20 or more A residues in their 5'-untranslated regions and remains effective as a repressor when an A61 tract is placed at different distances from the cap, up to 126 nucleotides. Deletion of the PABP C terminus, but not the PABC domain alone, significantly reduces its ability to inhibit translation when bound to sequences distal to the cap, but not to proximal ones. Moreover, cooperative binding by multiple PABP molecules to poly(A) requires the C terminus, but not the PABC domain. Further analysis using pull-down assays shows that the interaction between PABP molecules, mediated by the C terminus, does not require the PABC domain and is enhanced by the presence of RRM 4. In vivo, fusion proteins containing parts of the PABP C terminus fused to the viral coat protein MS2 have an enhanced ability to prevent the expression of chloramphenicol acetyltransferase reporter mRNAs containing the MS2 binding site at distal distances from the cap. Altogether, our results identify a proline- and glutamine-rich linker located between the RRMs and the PABC domain as being strictly required for PABP/PABP interaction, cooperative binding to poly(A) and enhanced translational repression of reporter mRNAs in vitro and in vivo.  相似文献   

14.
15.
AU-rich elements (AREs), residing in the 3' untranslated region (UTR) of many labile mRNAs, are important cis-acting elements that modulate the stability of these mRNAs by collaborating with trans-acting factors such as tristetraprolin (TTP). AREs also regulate translation, but the underlying mechanism is not fully understood. Here we examined the function and mechanism of TTP in ARE-mRNA translation. Through a luciferase-based reporter system, we used knockdown, overexpression, and tethering assays in 293T cells to demonstrate that TTP represses ARE reporter mRNA translation. Polyribosome fractionation experiments showed that TTP shifts target mRNAs to lighter fractions. In murine RAW264.7 macrophages, knocking down TTP produces significantly more tumor necrosis factor alpha (TNF-α) than the control, while the corresponding mRNA level has a marginal change. Furthermore, knockdown of TTP increases the rate of biosynthesis of TNF-α, suggesting that TTP can exert effects at translational levels. Finally, we demonstrate that the general translational repressor RCK may cooperate with TTP to regulate ARE-mRNA translation. Collectively, our studies reveal a novel function of TTP in repressing ARE-mRNA translation and that RCK is a functional partner of TTP in promoting TTP-mediated translational repression.  相似文献   

16.
17.
Processing bodies (P-bodies) are ribonucleoprotein granules that contain mRNAs, RNA-binding proteins and effectors of mRNA turnover. While P-bodies have been reported to contain translationally repressed mRNAs, a causative role for P-bodies in regulating mRNA decay has yet to be established. Enhancer of decapping protein 4 (EDC4) is a core P-body component that interacts with multiple mRNA decay factors, including the mRNA decapping (DCP2) and decay (XRN1) enzymes. EDC4 also associates with the RNA endonuclease MARF1, an interaction that antagonizes the decay of MARF1-targeted mRNAs. How EDC4 interacts with MARF1 and how it represses MARF1 activity is unclear. In this study, we show that human MARF1 and XRN1 interact with EDC4 using analogous conserved short linear motifs in a mutually exclusive manner. While the EDC4–MARF1 interaction is required for EDC4 to inhibit MARF1 activity, our data indicate that the interaction with EDC4 alone is not sufficient. Importantly, we show that P-body architecture plays a critical role in antagonizing MARF1-mediated mRNA decay. Taken together, our study suggests that P-bodies can directly regulate mRNA turnover by sequestering an mRNA decay enzyme and preventing it from interfacing with and degrading targeted mRNAs.  相似文献   

18.
The control of messenger RNA (mRNA) function by micro RNAs (miRNAs) in animal cells requires the GW182 protein. GW182 is recruited to the miRNA repression complex via interaction with Argonaute protein, and functions downstream to repress protein synthesis. Interaction with Argonaute is mediated by GW/WG repeats, which are conserved in many Argonaute-binding proteins involved in RNA interference and miRNA silencing, from fission yeast to mammals. GW182 contains at least three effector domains that function to repress target mRNA. Here, we analyze the functions of the N-terminal GW182 domain in repression and Argonaute1 binding, using tethering and immunoprecipitation assays in Drosophila cultured cells. We demonstrate that its function in repression requires intact GW/WG repeats, but does not involve interaction with the Argonaute1 protein, and is independent of the mRNA polyadenylation status. These results demonstrate a novel role for the GW/WG repeats as effector motifs in miRNA-mediated repression.  相似文献   

19.
MicroRNAs (miRNAs) play critical roles in a variety of biological processes through widespread effects on protein synthesis. Upon association with the miRNA-induced silencing complex (miRISC), miRNAs repress target mRNA translation and accelerate mRNA decay. Degradation of the mRNA is initiated by shortening of the poly(A) tail by the CCR4–NOT deadenylase complex followed by the removal of the 5′ cap structure and exonucleolytic decay of the mRNA. Here, we report a direct interaction between the large scaffolding subunit of CCR4–NOT, CNOT1, with the translational repressor and decapping activator protein, DDX6. DDX6 binds to a conserved CNOT1 subdomain in a manner resembling the interaction of the translation initiation factor eIF4A with eIF4G. Importantly, mutations that disrupt the DDX6–CNOT1 interaction impair miRISC-mediated gene silencing in human cells. Thus, CNOT1 facilitates recruitment of DDX6 to miRNA-targeted mRNAs, placing DDX6 as a downstream effector in the miRNA silencing pathway.  相似文献   

20.
Tristetraprolin (TTP) is an RNA-binding protein required for the rapid degradation of mRNAs containing AU-rich elements. Targets regulated by TTP include the mRNAs encoding tumor necrosis factor-alpha, granulocyte-macrophage colony-stimulating factor, interleukin-2 (IL-2), and immediate early response 3. To identify novel target mRNAs of TTP in macrophages, we used a genome-wide approach that combines RNA immunoprecipitation and microarray analysis. A list was compiled of 137 mRNAs that are associated with TTP with an estimated accuracy on the order of 90%. Sequence analysis revealed a highly significant enrichment of AU-rich element motifs, with AUUUA pentamers present in 96% and UUAUUUAUU nonamers present in 44% of TTP-associated mRNAs. We further show that IL-10 is a novel target regulated by TTP. IL-10 mRNA levels were found to be elevated because of a reduced decay rate in primary macrophages from TTP(-/-) mice. Our study demonstrates the importance of experimental approaches for identifying targets of RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号