首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary effusion lymphoma, a peculiar type of B cell non-Hodgkin lymphoma, preferentially develops in immunodeficient individuals and its pathogenesis is closely linked with human herpesvirus 8 (HHV-8). HHV-8 is present primarily persistence in primary effusion lymphoma cells, and the lytic cycle of HHV-8 can be induced by sodium butyrate (NaB) treatment. HHV-8 gene expression is affected by NaB in BCBL-1 cells, but the cellular response of BCBL-1 cells upon NaB treatment has not been investigated to date. Using BCBL-1 cells, a HHV-8 harboring cell line, we demonstrated that sodium butyrate could induce the reactive oxygen species generation, apoptosis and cell cycle arrest in BCBL-1 cells. The sodium butyrate-induce cell cycle arrest was associated with the decrease of Cdc2, Cdk4 and cyclin A in BCBL-1 cells without altering the protein levels of p21CIP1/WAF1. The apoptosis induced by sodium butyrate in BCBL-1 cells was independent of oxidative stress. (Mol Cell Biochem xxx: 1–9, 2005)  相似文献   

2.
ObjectivesTargeting the deubiquitinases (DUBs) has become a promising avenue for anti‐cancer drug development. However, the effect and mechanism of pan‐DUB inhibitor, PR‐619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated.Materials and MethodsThe effect of PR‐619 on ESCC cell growth and cell cycle was evaluated by CCK‐8 and PI staining. Annexin V‐FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca2+ concentration was monitored by Fluo‐3AM fluorescence. The accumulation of ubi‐proteins and the expression of the endoplasmic reticulum (ER) stress‐related protein and CaMKKβ‐AMPK signalling were determined by immunoblotting.ResultsPR‐619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR‐619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4‐Noxa axis. Moreover, the ER stress increased cytoplasmic Ca2+ and then stimulated autophagy through Ca2+‐CaMKKβ‐AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR‐41, could reduce the accumulation of ubi‐proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR‐619‐treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR‐619.ConclusionsOur findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR‐619) and imply that targeting DUBs may be a potential anti‐ESCC strategy.  相似文献   

3.
BackgroundDrug resistance from apoptosis is a challenging issue with different cancer types, and there is an interest in identifying other means of inducing cytotoxicity. Here, treatment of neuroblastoma cells with oxyresveratrol (OXYRES), a natural antioxidant, led to dose-dependent cell death and increased autophagic flux along with activation of caspase-dependent apoptosis.MethodsFor cell viability, we performed the CCK-8 assay. Protein expression changes were with Western blot and immunocytochemistry. Silencing of proteins was with siRNA. The readouts for cell cycle, mitochondria membrane potential, caspase-3, autophagy and apoptosis were performed with flow cytometry.ResultsPhosphorylation of p38 MAPK increased with OXYRES treatment and inhibition of p38 reduced autophagy and cell death from OXYRES. In contrast, PI3K/AKT/mTOR signaling decreased in the target cells with OXYRES and inhibition of PI3K or mTOR enhanced OXYRES-mediated cytotoxicity with increased levels of autophagy. Modulation of either of the apoptosis and autophagy flux pathways affected the extent of cell death by OXYRES, but did not affect the indicators of these pathways with respect to each other. Both pathways were independent of ROS generation or p53 activation.ConclusionOXYRES led to cell death from autophagy, which was independent of apoptosis induction. The OXYRES effects were due to changes in the activity levels of p38 MAPK and PI3K/AKT/mTOR.General significanceWith two independent and parallel pathways for cytotoxicity induction in target cells, this study puts forward a potential utility for OXYRES or the pathways it represents as novel means of inducing cell death in neuroblastoma cells.  相似文献   

4.
BackgroundOvarian cancer is one of the most common gynecological malignancies in the world. Daphnetin (Daph) was previously reported to possess antitumor potential, but its potential and molecular mechanisms in ovarian cancer remain poorly understood.PurposeIn the current study, we aimed to explore the antitumor effect and detailed mechanisms of Daph in ovarian cancer cells.MethodsThe cytotoxic effect of Daph on ovarian cells was determined in vitro and in vivo. Cell growth, proliferation, apoptosis and ROS generation were measured by CCK8 assays, colony formation assays and flow cytometry. Western blotting was used to evaluate the related signal proteins. Immunofluorescence and transmission electron microscopy were used to evaluate markers of autophagy and autophagic flux. The antitumor effects were observed in the A2780 xenograft model. Moreover, Daph-induced autophagy was observed by enhanced LC3-II accumulation and endogenous LC3 puncta, and an autophagy inhibitor further enhanced the antitumor efficacy of Daph, which indicated that the cytoprotective role of autophagy in ovarian cancer.ResultsWe found that Daph exhibited antitumor effects by inducing ROS-dependent apoptosis in ovarian cancer, which could be reversed by N-acetyl cysteine (NAC). The AMPK/Akt/mTOR pathway was involved in Daph-mediated cytoprotective autophagy, and when Daph-mediated the expression level of AMPK and autophagy were blocked, there was robust inhibition of cell proliferation and induction of apoptosis. In addition, in the A2780 xenograft model, combined treatment with Daph and an autophagy inhibitor showed obvious synergetic effects on the inhibition of cell viability and promotion of apoptosis, without any side effects.ConclusionOur results suggest that Daph triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Moreover, the combination of Daph and autophagy inhibitor may be a potential therapeutic strategy for ovarian cancer.  相似文献   

5.
《Phytomedicine》2015,22(13):1139-1149
BackgroundPolyphyllin I (PPI), a bioactive phytochemical isolated from the rhizoma of Paris polyphyllin, exerts preclinical anticancer efficacy in various cancer models. However, the effects of PPI on regulatory human hepatocellular carcinoma (HCC) cell proliferation and its underlying mechanisms remain unknown.PurposeThis study investigated the antiproliferation effect of PPI on HCC cells and its underlying mechanisms.MethodsCell viability was measured by MTT assay. Cell death, apoptosis and acidic vesicular organelles (AVOs) formation were determined by flow cytometry. Protein levels were analyzed by Western blot analysis.ResultsPPI induced apoptosis through the caspase-dependent pathway and activated autophagy through the PI3K/AKT/mTOR pathway. Blockade of autophagy by pharmacological inhibitors or RNA interference enhanced the cytotoxicity and antiproliferation effects of PPI. Moreover, chloroquine (CQ) enhanced the antiproliferation effect of PPI on HCC cells via the caspase-dependent apoptosis pathway by inhibiting protective autophagy. Therefore, the combination therapy of CQ and PPI exhibited synergistic effects on HCC cells compared with CQ or PPI alone.ConclusionThe current findings strongly indicate that PPI can induce protective autophagy in HCC cells, thereby providing a novel target in potentiating the anticancer effects of PPI and other chemotherapeutic drugs in liver cancer treatment. Moreover, the combination therapy of CQ and PPI is an effective and promising candidate to be further developed as therapeutic agents in the treatment of liver cancer.  相似文献   

6.
BackgroundTinospora cordifolia (Thunb.) Miers (Giloy) has been applied successfully as an anti-inflammatory, anti-diabetic, and even as an anti-cancer agent. Yet, to date, the application of Giloy has not been explored concerning oral cancer.ObjectivesTo assess the effect of T cordifolia (Thunb.) Miers (Giloy) extract (TcE) on an oral cancer cell line.MethodsAW13516 (oral cancer cell line) cells were treated with the prepared aqueous extract of TcE for 24 h at various concentrations ranging between 5 μg/ml and 100 μg/ml and compared with control (cells without treatment). Thee effect of the extracts on apoptosis was assessed by through Annexin V flow cytometry assay and Luminometry based assessment of Caspase 8, 9 and caspase 3/7 activity. RNA was isolated from treated cells and gene expression of selected metastatic genes (MMP1, MMP10, and CXCL8); epithelial-mesenchymal stem cell genes (TWIST1, SNAIL, ZEB1, Oct4) and stemness related genses (Nanog, Sox2) were analyzed by using a quantitative real-time PCR system. The experiments were performed in triplicates.ResultsAqueous extract of TcE was found to induce apoptosis inducer in AW13516 cells in a concentration-dependent manner and was potent even at a low concentration of 5 μg/ml. The apoptosis induction was confirmed with the caspase activity assay. Treatment of the cells with the extract for 24 h exhibited a significant decrease in the expression of EMT genes in a dose-dependent manner without an effect on the metastatic genes.ConclusionAqueous extract of TcE induces apoptosis-mediated cell death in the oral cancer cell line AW13516 while attenuating its potential for epithelial mesenchymal transition.  相似文献   

7.
Bruton’s tyrosine kinase (BTK) is a key regulator of B-cell receptor (BCR) signaling pathway and takes effect in the regulation of B-cell activation, survival, proliferation and differentiation. It has been proved that BTK is commonly overexpressed in mantle cell lymphoma (MCL), which makes it a focus of targeted therapy for MCL. Our studies yielded a novel series of pyrazolopyrimidine derivatives capable of potent inhibition of BTK. Notably, 12a showed higher selectivity against BTK and exhibited robust antiproliferative effects in both mantle cell lymphoma cell lines and primary patient tumor cells. Low micromolar doses of 12a induced strong cell apoptosis in Jeko-1 and Z138 cells.  相似文献   

8.
Autophagy and apoptosis are two major interconnected host cell responses to viral infection, including influenza A virus (IAV). Thus, delineating these events could facilitate the development of better treatment options and provide an effective anti-viral strategy for controlling IAV infection. We used A549 cells and mouse embryonic fibroblasts (MEF) to study the role of virus-induced autophagy and apoptosis, the cross-talk between both pathways, and their relation to IAV infection [ATCC strain A/Puerto Rico/8/34(H1N1) (hereafter; PR8)]. PR8-infected and mock-infected cells were analyzed by immunoblotting, immunofluorescence confocal microscopy, electron microscopy and flow cytometry (FACS). We found that PR8 infection simultaneously induced autophagy and apoptosis in A549 cells. Autophagy was associated with Bax and Bak activation, intrinsic caspase cleavage and subsequent PARP-1 and BID cleavage. Both Bax knockout (KO) and Bax/Bak double knockout MEFs displayed inhibition of virus-induced cytopathology and cell death and diminished virus-mediated caspase activation, suggesting that virus-induced apoptosis is Bax/Bak-dependent. Biochemical inhibition of autophagy induction with 3-methyladenine blocked both virus replication and apoptosis pathways. These effects were replicated using autophagy-refractory Atg3 KO and Atg5 KO cells. Taken together, our data indicate that PR8 infection simultaneously induces autophagy and Bax/caspase-dependent apoptosis, with autophagy playing a role to support PR8 replication, in part, by modulating virus-induced apoptosis.  相似文献   

9.
目的:探讨双氢青蒿素在体外对小鼠单核巨噬细胞RAW264.7的增殖、克隆形成、周期、凋亡和迁移的影响。方法:采用梯度浓度(2.5μg/m L, 5μg/m L, 10μg/m L, 20μg/m L)的双氢青蒿素处理RAW264.7细胞,利用CCK8实验检测双氢青蒿素对巨噬细胞增殖能力的影响,利用克隆形成实验检测双氢青蒿素对RAW264.7细胞克隆形成能力的影响,利用流式细胞术检测双氢青蒿素对RAW264.7细胞周期和凋亡的影响,利用划痕修复实验检测RAW264.7细胞迁移能力。结果:CCK8实验结果显示,双氢青蒿素可以显著抑制RAW264.7巨噬细胞的增殖能力,且抑制效果与双氢青蒿素的浓度呈正相关性。克隆形成实验结果显示,双氢青蒿素可以抑制细胞的克隆形成能力。双氢青蒿素处理使RAW264.7细胞G0/G1期比例显著升高,S期与G2/M期细胞比例显著降低。双氢青蒿素对巨噬细胞凋亡具有诱导作用,且凋亡诱导作用呈现浓度依赖的特性。划痕修复实验结果显示,双氢青蒿素可以显著抑制RAW264.7巨噬细胞的迁移能力。结论:双氢青蒿素可以导致巨噬细胞的细胞周期G0/G1阻滞,并且诱导细胞凋亡,对巨噬细胞增殖和迁移具有抑制作用。  相似文献   

10.
11.
Autophagy is considered as an important cell death mechanism that closely interacts with other common cell death programs like apoptosis. Critical role of autophagy in cell death makes it a promising, yet challenging therapeutic target for cancer. We identified a series of 1,2,3-triazole analogs having significant breast cancer inhibition property. Therefore, we attempted to study whether autophagy and apoptosis were involved in the process of cancer cell inhibition. The lead molecule, 1-(1-benzyl-5-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)-2-(4-bromophenylamino)-1-(4-chlorophenyl)ethanol (T-12) induced significant cell cycle arrest, mitochondrial membrane depolarization, apoptosis and autophagy in MCF-7 and MDA-MB-231 cells. T-12 increased reactive oxygen species and its inhibition by N-acetyl-l-cysteine protected breast cancer cells from autophagy and apoptosis. Autophagy inhibitor, 3-methyladenine abolished T-12 induced apoptosis, mitochondrial membrane depolarization and reactive oxygen species generation. This suggested that T-12 induced autophagy facilitated cell death rather than cell survival. Pan-caspase inhibition did not abrogate T-12 induced autophagy, suggesting that autophagy precedes apoptosis. In addition, T-12 inhibited cell survival pathway signaling proteins, Akt, mTOR and Erk1/2. T-12 also induced significant regression of tumor with oral dose of as low as 10 mg/kg bodyweight in rat mammary tumor model without any apparent toxicity. In presence of reactive oxygen species inhibitor (N-acetyl-l-cysteine) and autophagy inhibitor (chloroquine), T-12 induced tumor regression was significantly decreased. In conclusion, T-12 is a potent inducer of autophagy-dependent apoptosis in breast cancer cells both in vitro and in vivo and can serve as an important lead in development of new anti-tumor therapy.  相似文献   

12.

Background

Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear.

Methodology/Principal Findings

In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis.

Conclusions

These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies.  相似文献   

13.
【目的】明确真菌次级代谢产物rasfonin影响舒尼替尼(Sunitinib,ST)诱导的肾癌细胞自噬和凋亡作用机理。【方法】应用MTS(Methanethiosulfonate assay)和克隆形成实验检测rasfonin和舒尼替尼对肾癌细胞ACHN活性和增殖的影响,通过透射电子显微镜、荧光显微镜、蛋白免疫印迹、免疫荧光方法检测rasfonin和舒尼替尼处理的ACHN细胞自噬、凋亡情况和相关信号通路的变化。【结果】Rasfonin和舒尼替尼能够抑制肾癌细胞ACHN活性和细胞增殖;免疫印迹结果表明,两者均可以引起caspase依赖的凋亡。在rasfonin存在的情况下,不仅舒尼替尼所引起的凋亡和细胞活性丢失明显增加,而且其诱导的自噬流显著提高。无论是rasfonin还是舒尼替尼均明显地抑制哺乳雷帕霉素靶蛋白m TOR(Mammal target of rapamycin)磷酸化,而两者均能促进细胞外调节蛋白激酶(Extracellular regulated protein kinases,ERK)活性增加。【结论】rasfonin促进了舒尼替尼诱导的细胞自噬和凋亡,提高了舒尼替尼抑制肾癌细胞增殖的活性。  相似文献   

14.
Imatinib, the anti-Abl tyrosine kinase inhibitor used as first-line therapy in chronic myeloid leukemia (CML), eliminates CML cells mainly by apoptosis and induces autophagy. Analysis of imatinib-treated K562 cells reveals a cell population with cell cycle arrest, p27 increase and senescence-associated beta galactosidase (SA-β-Gal) staining. Preventing apoptosis by caspase inhibition decreases annexin V-positive cells, caspase-3 cleavage and increases the SA-β-Gal-positive cell population. In addition, a concomitant increase of the cell cycle inhibitors p21 and p27 is detected emphasizing the senescent phenotype. Inhibition of apoptosis by targeting Bim expression or overexpression of Bcl2 potentiates senescence. The inhibition of autophagy by silencing the expression of the proteins ATG7 or Beclin-1 prevents the increase of SA-β-Gal staining in response to imatinib plus Z-Vad. In contrast, in apoptotic-deficient cells (Bim expression or overexpression of Bcl2), the inhibition of autophagy did not significantly modify the SA-β-Gal-positive cell population. Surprisingly, targeting autophagy by inhibiting ATG5 is accompanied by a strong SA-β-Gal staining, suggesting a specific inhibitory role on senescence. These results demonstrate that in addition to apoptosis and autophagy, imatinib induced senescence in K562 CML cells. Moreover, apoptosis is limiting the senescent response to imatinib, whereas autophagy seems to have an opposite role.  相似文献   

15.
BackgroundHepatocellular Carcinoma (HCC) is extremely aggressive and presents low rates of response to the available chemotherapeutic agents. Many studies have focused on the search for alternative low-cost natural compounds with antiproliferative potential that selectively respond to liver cancer cells.PurposeThis study assessed the in vitro direct action of trans-chalcone (TC) on cells of the human HCC HuH7.5 cell line.MethodsWe subjected the HuH7.5 tumor cells to TC treatment at increasing concentrations (12.5–100 µM) for 24 and 48 h. Cell viability was verified through MTT and 50% inhibitory concentration of cells (IC50 23.66 µM) was determined within 48 h. We quantified trypan blue proliferation and light microscopy, ROS production, mitochondrial depolarization and autophagy, cell cycle analysis, and apoptosis using Muse® cell analyzer and immunocytochemical markings of p53 and β-catenin.ResultsData showed an effective dose- and time-dependent TC-cytotoxic action at low micromolar concentrations without causing toxicity to non-cancerous cells, such as erythrocytes. TC-treatment caused mitochondrial membrane damage and cell cycle G0/G1 phase arrest, increasing the presence of the p53 protein and decreasing β-catenin, in addition, to inducing cell death by autophagy. Additionally, TC decreased the metastatic capacity of HuH7.5, which affected the migration/invasion of this type of cell.ConclusionIn vitro TC activity in the human HCC HuH7.5 tumor cell line is shown to be a potential molecule to develop new therapies to repair the p53 pathway and prevent the overexpression of Wnt/β-catenin tumor development inducing autophagy cell death and decreasing metastatic capacity of HuH7.5 cell line.  相似文献   

16.
A new series of 1-substituted pyrazolopyrimidine derivatives were synthesized as potent BTK inhibitors and they were evaluated by enzyme-based assay and anti-proliferation against multiple B-cell lymphoma cell lines in vitro. Among these compounds, 9h exhibited the highest potency against BTK enzyme, with IC50 value of 4.2?nM. In particular, 8 and 9f performed better inhibition against the proliferation of B lymphoma cell lines DOHH2 and WSU-DLCL2 than the clinical drug ibrutinb. In addition, the test toward the normal PBMC cells showed that 8 possessed low cell cytotoxicity. All these explorations indicated that 8 could serve as a valuable anti-tumor agent for B-cell lymphoblastic leukemia treatment.  相似文献   

17.
18.
BackgroundCastration-resistant prostate cancer (CRPC) is a deadly malignancy without effective therapeutics. Cyclovirobuxine (CVB) can play an anticancer role by inhibiting mitochondrial function, regulating tumor cell apoptosis, dysregulating autophagy, and other mechanisms. This study aimed to examine the function and mechanism of CVB in CRPC to provide new insights into CRPC treatment.MethodsThe effect of CVB on PC3 and C4-2 cell viability was determined using a CCK8 assay. Core therapeutic targets of CVB in CRPC cells were identified using RNA sequencing, online database, and PPI network analyses. Western blotting, RT–qPCR and molecular docking were performed to evaluate the regulation of core targets by CVB. Utilizing GO and KEGG enrichment analyses, the probable anti-CRPC mechanism of CVB was investigated. Immunofluorescence, flow cytometry and colony formation assays were used to verify the potential phenotypic regulatory role of CVB in CRPC.ResultsCVB inhibited CRPC cell activity in a concentration-dependent manner. Mechanistically, it primarily regulated BRCA1-, POLD1-, BLM-, MSH2-, MSH6- and PCNA-mediated mismatch repair, homologous recombination repair, base excision repair, Fanconi anemia repair, and nucleotide excision repair pathways. Immunofluorescence, Western blot, flow cytometry and colony formation experiments showed that CVB induced DNA damage accumulation, cell apoptosis, and cell cycle arrest and inhibited CRPC cell proliferation.ConclusionCVB can induce DNA damage accumulation in CRPC cells by targeting DNA repair pathways and then induce cell apoptosis and cell cycle arrest, eventually leading to inhibition of the long-term proliferation of CRPC cells.  相似文献   

19.
Bruton’s tyrosine kinase (BTK) has emerged as an attractive target related to B-lymphocytes dysfunctions, especially hematologic malignancies and autoimmune diseases. In our study, a series of diphenylaminopyrimidine derivatives bearing dithiocarbamate moieties were designed and synthesized as novel BTK inhibitors for treatment of B-cell lymphoma. Among all these compounds, 30ab (IC50 = 1.15 ± 0.19 nM) displays similar or more potent inhibitory activity against BTK than spebrutinib (IC50 = 2.12 ± 0.32 nM) and FDA approved drug ibrutinib (IC50 = 3.89 ± 0.57 nM), which is attributed to close binding of 30ab with BTK predicted by molecular docking. In particular, 30ab exhibits enhanced anti-proliferative activity against B-lymphoma cell lines at the IC50 concentration of 0.357 ± 0.02 μM (Ramos) and 0.706 ± 0.05 μM (Raji), respectively, almost 10-fold better than ibrutinib and spebrutinib. In addition, 30ab displays stronger selectivity on B-cell lymphoma over other cancer cell lines than spebrutinib. Furthermore, 30ab efficiently blocks BTK downstream pathways and results in apoptosis of cancer cells. In vivo xenograft model evaluation demonstrates the significant efficacy and broad safety margin of 30ab in treatment of B-cell lymphoma. We propose that compound 30ab is a candidate for further study and development based on our current findings.  相似文献   

20.
Purpose: Carrimycin is a newly synthesized macrolide antibiotic with good antibacterial effect. Exploratory experiments found its function in regulating cell physiology, proliferation and immunity, suggesting its potential anti-tumor capacity. The aim of this study is to investigate the anti-tumor effect of carrimycin against human oral squamous cell carcinoma cells in vitro and in vivo.Methods: Human oral squamous cell carcinoma cells (HN30/HN6/Cal27/HB96 cell lines) were treated with gradient concentration of carrimycin. Cell proliferation, colony formation and migration ability were analyzed. Cell cycle and apoptosis were assessed by flow cytometry. The effect of carrimycin on OSCC in vivo was investigated in tumor xenograft models. Immunohistochemistry, western blot assay and TUNEL assays of tissue samples from xenografts were performed. The key proteins in PI3K/AKT/mTOR pathway and MAPK pathway were examined by western blot.Results: As the concentration of carrimycin increased, the proliferation, colony formation and migration ability of OSCC cells were inhibited. After treating with carrimycin, cell cycle was arrested in G0/G1 phase and cell apoptosis was promoted. The tumor growth of xenografts was significantly suppressed. Furthermore, the expression of p-PI3K, p-AKT, p-mTOR, p-S6K, p-4EBP1, p-ERK and p-p38 were down-regulated in vitro and in vivo.Conclusions: Carrimycin can inhibit the biological activities of OSCC cells in vitro and in vivo, and regulate the PI3K/AKT/mTOR and MAPK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号