首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 342 毫秒
1.
Human periodontal ligament cells (hPDLCs) are considered as an ideal cell type for periodontal tissue engineering as hPDLCs own mesenchymal stem cell-like properties. Additionally, it is suggested that α-calcitonin gene-related peptide (αCGRP) plays a pivotal role in the pathogenesis of periodontitis. However, the specific role of αCGRP on the regulation of alveolar bone regeneration which is essential for treatment of periodontitis remains unclear. In this study, lentiviral αCGRP expression vector was first transfected into hPDLCs. αCGRP expression and the osteogenesis-related gene (ALP, RUNX2, OCN, and BSP) expressions were detected. The results showed that expressions of osteogenic phenotypes were upregulated in αCGRP-transfected hPDLCs combined with an increased expression of Yes-associated protein (YAP), which is the key downstream effectors of Hippo pathway. Our observations suggest that αCGRP-mediated hPDLCs’ osteogenesis might relate with the activity of YAP signaling. These observations may reflect intrinsic functions of αCGRP in hPDLCs’ osteogenesis and its promising role in the treatment of bone deficiency in periodontal regeneration.  相似文献   

2.
3.
Although the matricellular protein periostin is prominently upregulated in skin and gingival healing, it plays contrasting roles in myofibroblast differentiation and matrix synthesis respectively. Palatal healing is associated with scarring that can alter or restrict maxilla growth, but the expression pattern and contribution of periostin in palatal healing is unknown. Using periostin-knockout (Postn−/−) and wild-type (WT) mice, the contribution of periostin to palatal healing was investigated through 1.5 mm full-thickness excisional wounds in the hard palate. In WT mice, periostin was upregulated 6 days post-wounding, with mRNA levels peaking at day 12. Genetic deletion of periostin significantly reduced wound closure rates compared to WT mice. Absence of periostin reduced mRNA levels of pivotal genes in wound repair, including α-SMA/acta2, fibronectin and βigh3. Recruitment of fibroblasts and inflammatory cells, as visualized by immunofluorescent staining for fibroblast specific factor-1, vimentin, and macrophages markers Arginase-1 and iNOS was also impaired in Postn−/−, but not WT mice. Palatal fibroblasts isolated from the hard palate of mice were cultured on collagen gels and prefabricated silicon substrates with varying stiffness. Postn−/− fibroblasts showed a significantly reduced ability to contract a collagen gel, which was rescued by the exogenous addition of recombinant periostin. As the stiffness increased, Postn−/− fibroblasts increasingly differentiated into myofibroblasts, but not to the same degree as the WT. Pharmacological inhibition of Rac rescued the deficient myofibroblastic phenotype of Postn−/− cells. Low stiffness substrates (0.2 kPa) resulted in upregulation of fibronectin in WT cells, an effect which was significantly reduced in Postn−/− cells. Quantification of immunostaining for vinculin and integrinβ1 adhesions revealed that Periostin is required for the formation of focal and fibrillar adhesions in mPFBs. Our results suggest that periostin modulates myofibroblast differentiation and contraction via integrinβ1/RhoA pathway, and fibronectin synthesis in an ECM stiffness dependent manner in palatal healing.  相似文献   

4.
5.
To determine whether the deletion of p16 can correct tooth and mandible growth retardation caused by Bmi1 deficiency, we compared the tooth and mandible phenotypes of homozygous p16-deficient (p16−/−) mice, homozygous Bmi1-deficient (Bmi1−/−) mice, double homozygous Bmi1 and p16-deficient (Bmi1−/−p16−/−) mice to those of their wild-type littermates at 4 weeks of age by radiograph, histochemistry and immunohistochemistry. Results showed that compared to Bmi1−/− mice, the dental mineral density, dental volume and dentin sialoprotein immunopositive areas were increased, whereas the ratio of the predentin area to total dentin area and that of biglycan immunopositive area to dentin area were decreased in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve tooth development in Bmi1 knockout mice. Compared to Bmi1−/− mice, the mandible mineral density, cortical thickness, alveolar bone volume, osteoblast number and activity, alkaline phosphatase positive area were all increased significantly in Bmi1−/−p16−/− mice. These results indicate that the deletion of p16 can improve mandible growth in Bmi1 knockout mice. Furthermore, the protein expression levels of cyclin D, CDK4 and p53 were increased significantly in p16−/− mice compared with those from wild-type mice; the protein expression levels of cyclin D and CDK4 were decreased significantly, whereas those of p27 and p53 were increased significantly in Bmi1−/− mice; these parameters were partly rescued in Bmi1−/−p16−/− mice compared with those from Bmi1−/− mice. Therefore, our results indicate that Bmi1 plays roles in regulating tooth and mandible development by inhibiting p16 signal pathway which initiated entry into cell cycle.  相似文献   

6.
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) are potent vasodilator peptides and serve as ligands for the G-protein coupled receptor (GPCR) calcitonin receptor-like receptor (CLR/Calcrl). Three GPCR accessory proteins called receptor activity-modifying proteins (RAMPs) modify the ligand binding affinity of the receptor such that the CLR/RAMP1 heterodimer preferably binds CGRP, while CLR/RAMP2 and CLR/RAMP3 have a stronger affinity for AM. Here we determine the contribution of each of the three RAMPs to blood pressure control in response to exogenous AM and CGRP by measuring the blood pressure of mice with genetic reduction or deletion of the receptor components. Thus, the cardiovascular response of Ramp1−/−, Ramp2+/−, Ramp3−/−, Ramp1−/−/Ramp3−/− double-knockout (dKO), and Calcrl+/− mice to AM and CGRP were compared to wildtype mice. While under anesthesia, Ramp1−/− male mice had significantly higher basal blood pressure than wildtype males; a difference which was not present in female mice. Additionally, anesthetized Ramp1−/−, Ramp3−/−, and Calcrl+/− male mice exhibited significantly higher basal blood pressure than females of the same genotype. The hypotensive response to intravenously injected AM was greatly attenuated in Ramp1−/− mice, and to a lesser extent in Ramp3−/− and Calcrl+/− mice. However, Ramp1−/−/Ramp3−/− dKO mice retained some hypotensive response to AM. These results suggest that the hypotensive effect of AM is primarily mediated through the CLR/RAMP1 heterodimer, but that AM signaling via CLR/RAMP2 and CLR/RAMP3 also contributes to some hypotensive action. On the other hand, CGRP’s hypotensive activity seems to be predominantly through the CLR/RAMP1 heterodimer. With this knowledge, therapeutic AM or CGRP peptides could be designed to cause less hypotension while maintaining canonical receptor-RAMP mediated signaling.  相似文献   

7.
AimsTo investigate whether haematopoietic TLR4 deletion attenuates perivascular brown adipose tissue inflammation in atherosclerotic mice.Methods and ResultsExperiments were performed using irradiated LDL receptor-deficient (LDLR−/−) mice with marrow from either TLR4-deficient (TLR4−/−) or age-matched wild-type (WT) mice. After 12 weeks of being fed a high-cholesterol diet, TLR4−/−  LDLR−/− mice developed fewer atherosclerotic lesions in the aorta compared to WT  LDLR−/− mice. This effect was associated with an increase in multilocular lipid droplets and mitochondria in perivascular adipose tissue (PVAT). Immunofluorescence analysis confirmed that there was an increase in capillary density and M2 macrophage infiltration, accompanied by a decrease in tumour necrosis factor (TNF)-α expression in the localized PVAT of TLR4−/−  LDLR−/− mice. In vitro studies indicated that bone marrow-derived macrophages (BMDMs) from WT mice demonstrated an M1-like phenotype and expression of inflammatory cytokines induced by palmitate. These effects were attenuated in BMDMs isolated from TLR4−/− mice. Furthermore, brown adipocytes incubated with conditioned medium (CM) derived from palmitate-treated BMDMs, exhibited larger and more unilocular lipid droplets, and reduced expression of brown adipocyte-specific markers and perilipin-1 compared to those observed in brown adipocytes exposed to CM from palmitate-treated BMDMs of TLR4−/− mice. This decreased potency was primarily due to TNF-α, as demonstrated by the capacity of the TNF-α neutralizing antibody to reverse these effects.ConclusionsThese results suggest that haematopoietic-specific deletion of TLR4 promotes PVAT homeostasis, which is involved in reducing macrophage-induced TNF-α secretion and increasing mitochondrial biogenesis in brown adipocytes.  相似文献   

8.
9.
Objectives:Neuropeptide Y (NPY) is involved in the coordination of bone mass and adiposity. However, multiple NPY sources exist and their individual contribution to the skeleton and adiposity not known. The objectives of our study were to evaluate the effects of peripheral mesenchymal derived NPY to the skeleton and adiposity and to compare them to the global NPYKO model.Methods:To study the role of mesenchymal-derived NPY, we crossed conditional NPY (NPYfl/fl) mice with Prx1cre to generate PrxNPYKO mice. The bone phenotype was assessed using micro-CT. The skeletal phenotype of PrxNPYKO mice was subsequently compared to global NPYKO model. We evaluated body weight, adiposity and functionally assessed the feeding response of NPY neurons to determine whether central NPY signaling was altered by Prx1cre.Results:We identified the increase in cortical parameters in PrxNPYKO mice with no changes to cancellous bone. This was the opposite phenotype to global NPYKO mice generated from the same conditional allele. Male NPYKO mice have increased adiposity, while PrxNPYKO mice showed no difference, demonstrating that local mesenchymal-derived NPY does not influence adiposity.Conclusion:NPY mediates both positive and negative effects on bone mass via separate regulatory pathways. Deletion of mesenchymal-derived NPY had a positive effect on bone mass.  相似文献   

10.
Although bone regeneration is typically a reliable process, type 2 diabetes is associated with impaired or delayed healing processes. In addition, angiogenesis, a crucial step in bone regeneration, is often altered in the diabetic state. In this study, different stages of bone regeneration were characterized in an unicortical bone defect model comparing transgenic type 2 diabetic (db-/db-) and wild type (WT) mice in vivo. We investigated angiogenesis, callus formation and bone remodeling at early, intermediate and late time points by means of histomorphometry as well as protein level analyses. In order to enhance bone regeneration, defects were locally treated with recombinant FGF-9 or VEGFA. Histomorphometry of aniline blue stained sections indicated that bone regeneration is significantly decreased in db-/db- as opposed to WT mice at intermediate (5 days post operation) and late stages (7 days post operation) of bone regeneration. Moreover, immunohistochemical analysis revealed significantly decreased levels of RUNX-2, PCNA, Osteocalcin and PECAM-1 in db-/db- defects. In addition, osteoclastogenesis is impaired in db-/db- indicating altered bone remodeling. These results indicate significant impairments in angiogenesis and osteogenesis in type 2 diabetic bones. Importantly, angiogenesis, osteogenesis and bone remodeling could be reconstituted by application of recombinant FGF-9 and, in part, by VEGFA application. In conclusion, our study demonstrates that type 2 diabetes affects angiogenesis, osteogenesis and subsequently bone remodeling, which in turn leads to decreased bone regeneration. These effects could be reversed by local application of FGF-9 and to a lesser degree VEGFA. These data could serve as a basis for future therapeutic applications aiming at improving bone regeneration in the type 2 diabetic patient population.  相似文献   

11.
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) belong to the Small Integrin-Binding Ligand N-linked Glycoprotein (SIBLING) family. In addition to the features common to all SIBLING members, DMP1 and DSPP share several unique similarities in chemical structure, proteolytic activation and tissue localization. Mutations in, or deletion of DMP1, cause autosomal recessive hypophosphatemic rickets along with dental defects; DSPP mutations or its ablation are associated with dentinogenesis imperfecta. While the roles and functional mechanisms of DMP1 in osteogenesis have been extensively studied, those of DSPP in long bones have been studied only to a limited extent. Previous studies by our group revealed that transgenic expression of Dspp completely rescued the dentin defects of Dmp1-null (Dmp1−/−) mice. In this investigation, we assessed the effects of transgenic Dspp on osteogenesis by analyzing the formation and mineralization of the long bones in Dmp1−/− mice that expresses a transgene encoding full-length DSPP driven by a 3.6-kb rat Col1a1 promoter (referred as “Dmp1−/−;Dspp-Tg mice”). We characterized the long bones of the Dmp1−/−;Dspp-Tg mice at different ages and compared them with those from Dmp1−/− and Dmp1+/− (normal control) mice. Our analyses showed that the long bones of Dmp1−/−;Dspp-Tg mice had a significant increase in cortical bone thickness, bone volume and mineral density along with a remarkable restoration of trabecular thickness compared to those of the Dmp1−/− mice. The long bones of Dmp1−/−;Dspp-Tg mice underwent a dramatic reduction in the amount of osteoid, significant improvement of the collagen fibrillar network, and better organization of the lacunocanalicular system, compared to the Dmp1−/− mice. The elevated levels of biglycan, bone sialoprotein and osteopontin in Dmp1−/− mice were also noticeably corrected by the transgenic expression of Dspp. These findings suggest that DSPP and DMP1 may function synergistically within the complex milieus of bone matrices.  相似文献   

12.
ObjectiveSensory and sympathetic nerve fibers (SNF) innervate bone and epiphyseal growth plate. The role of neuronal signals for proper endochondral ossification during skeletal growth is mostly unknown. Here, we investigated the impact of the absence of sensory neurotransmitter substance P (SP) and the removal of SNF on callus differentiation, a model for endochondral ossification in adult animals, and on bone formation.MethodsIn order to generate callus, tibia fractures were set in the left hind leg of wild type (WT), tachykinin 1-deficient (Tac1 −/−) mice (no SP) and animals without SNF. Locomotion was tested in healthy animals and touch sensibility was determined early after fracture. Callus tissue was prepared for immunofluorescence staining for SP, neurokinin1-receptor (NK1R), tyrosine-hydroxylase (TH) and adrenergic receptors α1, α2 and β2. At the fracture site, osteoclasts were stained for TRAP, osteoblasts were stained for RUNX2, and histomorphometric analysis of callus tissue composition was performed. Primary murine bone marrow derived macrophages (BMM), osteoclasts, and osteoblasts were tested for differentiation, activity, proliferation and apoptosis in vitro. Femoral fractures were set in the left hind leg of all the three groups for mechanical testing and μCT-analysis.ResultsCallus cells stained positive for SP, NK1R, α1d- and α2b adrenoceptors and remained β2-adrenoceptor and TH-negative. Absence of SP and SNF did not change the general locomotion but reduces touch sensitivity after fracture. In mice without SNF, we detected more mesenchymal callus tissue and less cartilaginous tissue 5 days after fracture. At day 13 past fracture, we observed a decrease of the area covered by hypertrophic chondrocytes in Tac1 −/− mice and mice without SNF, a lower number of osteoblasts in Tac1 −/− mice and an increase of osteoclasts in mineralized callus tissue in mice without SNF. Apoptosis rate and activity of osteoclasts and osteoblasts isolated from Tac1 −/− and sympathectomized mice were partly altered in vitro. Mechanical testing of fractured- and contralateral legs 21 days after fracture, revealed an overall reduced mechanical bone quality in Tac1 −/− mice and mice without SNF. μCT-analysis revealed clear structural alteration in contralateral and fractured legs proximal of the fracture site with respect to trabecular parameters, bone mass and connectivity density. Notably, structural parameters are altered in fractured legs when related to unfractured legs in WT but not in mice without SP and SNF.ConclusionThe absence of SP and SNF reduces pain sensitivity and mechanical stability of the bone in general. The micro-architecture of the bone is profoundly impaired in the absence of intact SNF with a less drastic effect in SP-deficient mice. Both sympathetic and sensory neurotransmitters are indispensable for proper callus differentiation. Importantly, the absence of SP reduces bone formation rate whereas the absence of SNF induces bone resorption rate. Notably, fracture chondrocytes produce SP and its receptor NK1 and are positive for α-adrenoceptors indicating an endogenous callus signaling loop. We propose that sensory and sympathetic neurotransmitters have crucial trophic effects which are essential for proper bone formation in addition to their classical neurological actions.  相似文献   

13.
14.
Yes‐associated protein (YAP) is a main mediator of the Hippo pathway and promotes cancer development and progression in human lung cancer. We sought to determine whether inhibition of YAP suppresses metastasis of human lung adenocarcinoma in a murine model. We found that metastatic NSCLC cell lines H2030‐BrM3(K‐rasG12C mutation) and PC9‐BrM3 (EGFRΔexon19 mutation) had a significantly decreased p‐YAP(S127)/YAP ratio compared to parental H2030 (K‐rasG12C mutation) and PC9 (EGFRΔexon19 mutation) cells (P < .05). H2030‐BrM3 cells had significantly increased YAP mRNA and expression of Hippo downstream genes CTGF and CYR61 compared to parental H2030 cells (P < .05). Inhibition of YAP by short hairpin RNA (shRNA) and small interfering RNA (siRNA) significantly decreased mRNA expression in downstream genes CTGF and CYR61 in H2030‐BrM3 cells (P < .05). In addition, inhibiting YAP by YAP shRNA significantly decreased migration and invasion abilities of H2030‐BrM3 cells (P < .05). We are first to show that mice inoculated with YAP shRNA‐transfected H2030‐BrM3 cells had significantly decreased metastatic tumour burden and survived longer than control mice (P < .05). Collectively, our results suggest that YAP plays an important role in promoting lung adenocarcinoma brain metastasis and that direct inhibition of YAP by shRNA suppresses H2030‐BrM3 cell brain metastasis in a murine model.  相似文献   

15.
Gap junctions are intercellular channels that connect the cytoplasm of adjacent cells, allowing the passage of small molecules (<1 kDa) and thereby the regulation of many different processes. In the male gonad, the most abundant protein that builds gap junctions is connexin 43 (Cx43, GJA1). Specific knock-out of Sertoli cells (SCCx43KO?/?) results in an impaired spermatogenesis up to the Sertoli cell only syndrome. The aim of this study was to compare the testicular expression pattern of the androgen receptor (AR) in wild type (WT) and SCCx43KO?/? mice. In both WT and SCCx43KO?/? testes, the AR staining was restricted to the nuclei of Sertoli, Leydig, and peritubular cells. However, the staining intensity varied between control and mutant mice. In the latter, the AR expression depended on the level of the seminiferous tubule impairment. In tubules with qualitatively normal spermatogenesis, the AR protein expression was similar to that observed in the testes of WT mice. Conversely, seminiferous tubules with an arrest of spermatogenesis at the level of spermatogonial or spermatocyte phase expressed the AR at a lower intensity. In Sertoli cell only tubules (no germ cells in the tubules), the AR immunoreaction was mainly weak or undetectable. Moreover, AR staining was lower in Sertoli and Leydig cells (p < 0.001 and p < 0.05, respectively) of SCCx43KO?/? mice compared to WT mice, as revealed by a semiquantitative analysis. In conclusion, the deletion of Cx43 leads to a partial disruption of the AR signaling pathway, indicating a possible reason for the observed impaired spermatogenesis.  相似文献   

16.
Coupling between angiogenesis and osteogenesis has an important role in both normal bone injury repair and successful application of tissue‐engineered bone for bone defect repair. Type H blood vessels are specialized microvascular components that are closely related to the speed of bone healing. Interactions between type H endothelial cells and osteoblasts, and high expression of CD31 and EMCN render the environment surrounding these blood vessels rich in factors conducive to osteogenesis and promote the coupling of angiogenesis and osteogenesis. Type H vessels are mainly distributed in the metaphysis of bone and densely surrounded by Runx2+ and Osterix+ osteoprogenitors. Several other factors, including hypoxia‐inducible factor‐1α, Notch, platelet‐derived growth factor type BB, and slit guidance ligand 3 are involved in the coupling of type H vessel formation and osteogenesis. In this review, we summarize the identification and distribution of type H vessels and describe the mechanism for type H vessel‐mediated modulation of osteogenesis. Type H vessels provide new insights for detection of the molecular and cellular mechanisms that underlie the crosstalk between angiogenesis and osteogenesis. As a result, more feasible therapeutic approaches for treatment of bone defects by targeting type H vessels may be applied in the future.  相似文献   

17.
A series of hesperidin derivatives were prepared and identified by IR, 1H NMR, and MS spectra. These compounds were evaluated in vitro and in vivo based on α-glucosidase inhibition, glucose consumption of HepG2 cells, and blood glucose level in streptozotocin-induced diabetic mice. The results revealed that all the compounds exhibited anti-hyperglycemic activities. The inhibition at 10?3 M of compounds 3 and 7a on α-glucosidase were 55.02% and 53.34%, respectively, as compared to 54.80% by acarbose. Treated by compound 3 and the reference drug metformin, glucose consumption of HepG2 cell were 1.78 and 2.11 mM, respectively. After the streptozotocin-induced diabetic mice were oral administrated with compound 3 at 100 mg kg?1 d?1 for 10 days, the blood glucose level of 3 treated mice (13.23 mM, P <0.05) showed significant difference when compared to model control (23.03 mM). Thus, compound 3 exhibited promising anti-hyperglycemic activity.  相似文献   

18.
Chemokine receptor 5 (CCR5) is a pivotal regulator of macrophage trafficking in the kidneys in response to an inflammatory cascade. We investigated the role of CCR5 in experimental ischaemic-reperfusion injury (IRI) pathogenesis. To establish IRI, we clamped the bilateral renal artery pedicle for 30 min and then reperfused the kidney. We performed adoptive transfer of lipopolysaccharide (LPS)-treated RAW 264.7 macrophages following macrophage depletion in mice. B6.CCR5−/− mice showed less severe IRI based on tubular epithelial cell apoptosis than did wild-type mice. CXCR3 expression in CD11b+ cells and inducible nitric oxide synthase levels were more attenuated in B6.CCR5−/− mice. B6.CCR5−/− mice showed increased arginase-1 and CD206 expression. Macrophage-depleted wild-type mice showed more injury than B6.CCR5−/− mice after M1 macrophage transfer. Adoptive transfer of LPS-treated RAW 264.7 macrophages reversed the protection against IRI in wild-type, but not B6.CCR5−/− mice. Upon knocking out CCR5 in macrophages, migration of bone marrow-derived macrophages from wild-type mice towards primary tubular epithelial cells with recombinant CCR5 increased. Phospho-CCR5 expression in renal tissues of patients with acute tubular necrosis was increased, showing a positive correlation with tubular inflammation. In conclusion, CCR5 deficiency favours M2 macrophage activation, and blocking CCR5 might aid in treating acute kidney injury.  相似文献   

19.
Posttraumatic osteomyelitis and the ensuing bone defects are a debilitating complication after open fractures with little therapeutic options. We have recently identified potent osteoanabolic effects of sphingosine-1-phosphate (S1P) signalling and have now tested whether it may beneficially affect bone regeneration after infection. We employed pharmacological S1P lyase inhibition by 4-deoxypyrodoxin (DOP) to raise S1P levels in vivo in an unicortical long bone defect model of posttraumatic osteomyelitis in mice. In a translational approach, human bone specimens of clinical osteomyelitis patients were treated in organ culture in vitro with DOP. Bone regeneration was assessed by μCT, histomorphometry, immunohistology and gene expression analysis. The role of S1P receptors was addressed using S1PR3 deficient mice. Here, we present data that DOP treatment markedly enhanced osteogenesis in posttraumatic osteomyelitis. This was accompanied by greatly improved osteoblastogenesis and enhanced angiogenesis in the callus accompanied by osteoclast-mediated bone remodelling. We also identified the target of increased S1P to be the S1PR3 as S1PR3−/− mice showed no improvement of bone regeneration by DOP. In the human bone explants, bone mass significantly increased along with enhanced osteoblastogenesis and angiogenesis. Our data suggest that enhancement of S1P/S1PR3 signalling may be a promising therapeutic target for bone regeneration in posttraumatic osteomyelitis.  相似文献   

20.
BackgroundSerpina3 is a member of the serine protease inhibitor family and is involved in the inflammatory response. In this study, we investigated the effect of Serpina3c on pancreatic function in hypercholesterolemic mice.MethodsTo investigate the role of Serpina3c in hyperlipidaemia, Serpina3c knockout mice were bred with Apoe-knockout mice (on a C57BL/6 background) to generate heterozygous Serpina3c-Apoe double knockout (Serpina3c+/−/Apoe+/−) mice and were then bred to obtain homozygotes. C57BL/6, Serpina3c−/−, Apoe−/−, and Apoe−/-Serpina3c−/− mice were fed normal chow, and Apoe−/− and Apoe−/-Serpina3c−/− mice were fed a high-fat diet (HFD). After feeding for 3 months, the mice were monitored for body weight, blood glucose, glucose tolerance, and insulin tolerance test (ITT). ELISA and immunohistochemistry were used to detect insulin levels and glucagon expression. Immunohistochemical staining for macrophages in the pancreas was also performed. Western blot analysis was performed on pancreatic tissues to detect the protein levels of insulin-associated molecules, the metalloproteinase MMP2, the tissue inhibitor TIMP2 and components of the JNK-related pathway.ResultsBlood glucose levels, glucose tolerance, and ITT were not significantly different among the groups. Serpina3c knockout resulted in blood lipid abnormalities in mice under HFD conditions. Insulin secretion was decreased in Apoe−/-Serpina3c−/− mice compared with Apoe−/− mice under normal chow conditions. In addition, Apoe−/-Serpina3c−/− mice exhibited increased insulin and glucagon secretion and expression after three months of HFD feeding, but insulin secretion was decreased in Apoe−/-Serpina3c−/− mice compared with Apoe−/− mice after the fifth month of HFD feeding. Serpina3c knockout increased MMP2 protein levels, whereas TIMP2 levels in the pancreas were decreased. Furthermore, Serpina3c knockout significantly upregulated the number of macrophages in the pancreas under HFD conditions. The JNK/AKT/FOXO1/PDX-1 axis was found to be involved in Serpina3c-regulated insulin secretion.ConclusionThese novel findings show that Serpina3c could play a protective role in insulin secretion partly through the JNK-related pathway under HFD conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号