首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MEF2: a central regulator of diverse developmental programs   总被引:8,自引:0,他引:8  
  相似文献   

2.
3.
The set of (feedback) circuits of a complex system is the machinery that allows the system to be aware of the levels of its crucial constituents. Circuits can be identified without ambiguity from the elements of the Jacobian matrix of the system. There are two types of circuits: positive if they comprise an even number of negative interactions, negative if this number is odd. The two types of circuits play deeply different roles: negative circuits are required for homeostasis, with or without oscillations, positive circuits are required for multistationarity, and hence, in biology, for differentiation and memory. In non-linear systems, a circuit can positive or negative (an 'ambiguous circuit', depending on the location in phase space. Full circuits are those circuits (or unions of disjoint circuits) that imply all the variables of the system. There is a tight relation between circuits and steady states. Each full circuit, if isolated, generates steady state(s) whose nature (eigenvalues) is determined by the structure of the circuit. Multistationarity requires the presence of at least two full circuits of opposite Eisenfeld signs, or else, an ambiguous circuit. We show how a significant part of the dynamical behaviour of a system can be predicted by a mere examination of its Jacobian matrix. We also show how extremely complex dynamics can be generated by such simple logical structures as a single (full and ambiguous) circuit.  相似文献   

4.
How does the connectivity of a neuronal circuit, together with the individual properties of the cell types that take part in it, result in a given computation? We examine this question in the context of retinal circuits. We suggest that the retina can be viewed as a parallel assemblage of many small computational devices, highly stereotypical and task-specific circuits afferent to a given ganglion cell type, and we discuss some rules that govern computation in these devices. Multi-device processing in retina poses conceptual problems when it is contrasted with cortical processing. We lay out open questions both on processing in retinal circuits and on implications for cortical processing of retinal inputs.  相似文献   

5.
6.
Retinitis pigmentosa is a hereditary eye disease that affects photoreceptors and leads to blindness. The discovery of a microbial light-gated channel and the subsequent development of similar 'optogenetic' sensors have opened the door to creating artificial photoreceptors in the remaining retinal circuits of retinitis pigmentosa retinas via gene therapy. Here we review recent studies in animal models of retinitis pigmentosa that have combined knowledge of retinal cell types, circuits and computations with the ability to equip cell types with optogenetic sensors in order to restore visual activity. We also discuss the translational potential of this therapy.  相似文献   

7.
Cellular communication relies on signaling circuits whose statuses are mainly modulated by soluble biomolecules such as carbohydrates, lipids, proteins, and metabolites as well as extracellular vesicles (EVs). Therefore, the active secretion of such biomolecules is critical for both cell homeostasis and proper pathophysiological responses in a timely fashion. In this context, proteins are among the main modulators of such biological responses. Hence, profiling cell line secretomes may be an opportunity for the identification of “signatures” of specific cell types (i.e., stromal or metastatic cells) with important prognostic/therapeutic value. This review will focus on the biological implications of cell secretomes in the context of cancer, as well as their functional roles in shaping the tumoral microenvironment (TME) and communication status of participating cells.  相似文献   

8.
9.
Gap junctions have diverse roles in a wide variety of tissues and have recently become a subject of intense investigation in neural circuits where synchrony and oscillations may play an important part. In circuits where gap junctions are present, the possibility arises of identifying intercommunicating cells via introduction of tracer into one cell and observing its spread into its coupled neighbors. Staining the coupled cells by this means opens the door to many vital techniques including paired-cell electrophysiology, RT-PCR, and morphological characterization of previously unknown coupled cells. Tracers commonly used at the present time are not generally suitable for these purposes in many tissues, including neurons. This paper describes how a fluorescent nuclear tracer, Po-pro-1, can be used to visualize coupled cells in several types of retinal neurons thought to be comprised of different connexin proteins including Cx36, Cx45, Cx50, and Cx57.  相似文献   

10.
Ellis SL  Nilsson SK 《Cytotherapy》2012,14(2):135-143
While it is accepted that hemopoietic stem cells (HSC) are located in a three-dimensional microenvironment, termed a niche, the cellular and extracellular composition, as well as the multifaceted effects the components of the niche have on HSC regulation, remains undefined. Over the past four decades numerous advances in the field have led to the identification of roles for some cell types and propositions of potentially a number of HSC niches. We present evidence supporting the roles of multiple cell types and extracellular matrix molecules in the HSC niche, as well as discuss the potential significant overlap and intertwining of previously proposed distinct HSC niches.  相似文献   

11.
Purinergic transmission is one of the most ancient and widespread extracellular signalling systems. In the brain, purinergic signalling plays a unique role in integrating neuronal and glial cellular circuits, as virtually every type of glial cell possesses receptors to purines and pyrimidines. These receptors, represented by metabotropic P1 adenosine receptors, metabotropic P2Y purinoceptors and ionotropic P2X purinoceptors, control numerous physiological functions of glial cells and are intimately involved in virtually every form of neuropathology. In this essay, we provide an in depth overview of purinoceptor distribution in two types of CNS glia—in astrocytes and oligodendrocytes—and discuss their physiological and pathophysiological roles. An erratum to this article can be found at  相似文献   

12.
13.
14.
Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase–dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.  相似文献   

15.
Ferrell JE  Tsai TY  Yang Q 《Cell》2011,144(6):874-885
Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur, just as the theory of gravitation allows one to understand why cannonballs fly in parabolic arcs. The simplest examples of the eukaryotic cell cycle operate like autonomous oscillators. Here, we present the basic theory of oscillatory biochemical circuits in the context of the Xenopus embryonic cell cycle. We examine Boolean models, delay differential equation models, and especially ordinary differential equation (ODE) models. For ODE models, we explore what it takes to get oscillations out of two simple types of circuits (negative feedback loops and coupled positive and negative feedback loops). Finally, we review the procedures of linear stability analysis, which allow one to determine whether a given ODE model and a particular set of kinetic parameters will produce oscillations.  相似文献   

16.

Background

During embryogenesis, signaling molecules produced by one cell population direct gene regulatory changes in neighboring cells and influence their developmental fates and spatial organization. One of the earliest events in the development of the vertebrate embryo is the establishment of three germ layers, consisting of the ectoderm, mesoderm and endoderm. Attempts to measure gene expression in vivo in different germ layers and cell types are typically complicated by the heterogeneity of cell types within biological samples (i.e., embryos), as the responses of individual cell types are intermingled into an aggregate observation of heterogeneous cell types. Here, we propose a novel method to elucidate gene regulatory circuits from these aggregate measurements in embryos of the frog Xenopus tropicalis using gene network inference algorithms and then test the ability of the inferred networks to predict spatial gene expression patterns.

Results

We use two inference models with different underlying assumptions that incorporate existing network information, an ODE model for steady-state data and a Markov model for time series data, and contrast the performance of the two models. We apply our method to both control and knockdown embryos at multiple time points to reconstruct the core mesoderm and endoderm regulatory circuits. Those inferred networks are then used in combination with known dorsal-ventral spatial expression patterns of a subset of genes to predict spatial expression patterns for other genes. Both models are able to predict spatial expression patterns for some of the core mesoderm and endoderm genes, but interestingly of different gene subsets, suggesting that neither model is sufficient to recapitulate all of the spatial patterns, yet they are complementary for the patterns that they do capture.

Conclusion

The presented methodology of gene network inference combined with spatial pattern prediction provides an additional layer of validation to elucidate the regulatory circuits controlling the spatial-temporal dynamics in embryonic development.  相似文献   

17.
Luo L  Callaway EM  Svoboda K 《Neuron》2008,57(5):634-660
Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.  相似文献   

18.
Neuronal circuits with whisker-related patterns, such as those observed in the rodent somatosensory barrel cortex, have been widely used as a model system for investigating the anatomical organization, development and physiological roles of functional neuronal circuits. Whisker-related patterns exist not only in the barrel cortex but also in subcortical structures along the trigeminal neuraxis from the brainstem to the cortex. Here, we briefly summarize the organization, formation, and function of each neuronal circuit with whisker-related patterns, including the novel axonal trajectories that we recently found with the aid of in utero electroporation. We also discuss their biological implications as model systems for the studies of functional neuronal circuits.  相似文献   

19.
In the vertebrate retina, the formation of neural circuits within discrete laminae is critical for the establishment of retinal visual function. Precise formation of retinal circuits requires the coordinated actions of adhesive and repulsive molecules, including repulsive transmembrane semaphorins (Sema6A, Sema5A, and Sema5B). These semaphorins signal through different Plexin A (PlexA) receptors, thereby regulating distinct aspects of retinal circuit assembly. Here, we investigate the physiological roles of three Class 6 transmembrane semaphorins (Sema6B, Sema6C, and Sema6D), previously identified as PlexA receptor ligands in non-retinal tissues, in mammalian retinal development. We performed expression analysis and also phenotypic analyses of mice that carry null mutations in each of genes encoding these proteins using a broad range of inner and outer retinal markers. We find that these Class 6 semaphorins are uniquely expressed throughout postnatal retinal development in specific domains and cell types of the developing retina. However, we do not observe defects in stereotypical lamina-specific neurite stratification of retinal neuron subtypes in Sema6B−/− or Sema6C−/−; Sema6D−/− retinas. These findings indicate these Class 6 transmembrane semaphorins are unlikely to serve as major PlexA receptor ligands for the assembly of murine retinal circuit laminar organization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号