首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Onco-miR-182-5p has been reported to be over-expressed in bladder cancer (BC) tissues however a detailed functional analysis of miR-182-5p has not been carried out in BC. Therefore the purpose of this study was to: 1. conduct a functional analysis of miR-182-5p in bladder cancer, 2. assess its usefulness as a tumor marker, 3. identify miR-182-5p target genes in BC. Initially we found that miR-182-5p expression was significantly higher in bladder cancer compared to normal tissues and high miR-182-5p expression was associated with shorter overall survival in BC patients. To study the functional significance of miR-182-5p, we over-expressed miR-182-5p with miR-182-5p precursor and observed that cell proliferation, migration and invasion abilities were increased in BC cells. However cell apoptosis was inhibited by miR-182-5p. We also identified Smad4 and RECK as potential target genes of miR-182-5p using several algorithms. 3′UTR luciferase activity of these target genes was significantly decreased and protein expression of these target genes was significantly up-regulated in miR-182-5p inhibitor transfected bladder cancer cells. MiR-182-5p also increased nuclear beta-catenin expression and while Smad4 repressed nuclear beta-catenin expression. In conclusion, our data suggests that miR-182-5p plays an important role as an oncogene by knocking down RECK and Smad4, resulting in activation of the Wnt-beta-catenin signaling pathway in bladder cancer.  相似文献   

2.
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3′-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3′UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.  相似文献   

3.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

4.
5.
6.
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults. Accumulating investigations have identified the aberrant expression of miRNAs (microRNAs) in UM, such as miR-181, miR-20a, miR-144, miR-146a. The purpose of this study is to investigate the biological function of miR-224-5p in UM. The expression of miR-224-5p, PIK3R3, and AKT3 in 30 tumor tissues and paired adjacent noncancerous tissues were analyzed using Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) assays. Cell proliferation assay, transwell assay, and wound healing assay were used to measure the effects of miR-224-5p on the motility of UM in vitro. Western blot analysis and luciferase assays were used to detect the expression of PIK3R3 and AKT3 as miR-224-5p downstream targets. The results of Western blot analysis and qRT-PCR assays indicated that the expression of miR-224-5p was lower in UM tissues compared to normal tissue, while the expression of PIK3R3 and AKT3 were simultaneously increased. Upregulation of miR-224-5p significantly inhibited capacities of proliferation, invasion, and migration of OCM-1A cells and decreased expression of PIK3R3 and AKT3. Luciferase assay demonstrated PIK3R3 and AKT3 as downstream targets of miR-224-5p. Moreover, upregulating PIK3R3 and AKT3 restrained miR-224-5p-induced inhibition of the motility of OCM-1A cells. Thus, our study proved that miR-224-5p was involved in proliferation, invasion, and migration of UM cells via regulation the expression of PIK3R3 and AKT3. And the results also established a miR-224-5p/PIK3R3/PI3K/AKT axis in the regulation of UM progression, providing an experimental basis for further exploring the miR-224-5p as a therapeutic and diagnosis target for patients with UM.  相似文献   

7.
近期研究表明,miR-182-5p对多种癌症的侵袭和转移具有重要作用,但其在乳腺癌侵袭转移中的研究相对较少。本研究通过网上在线microRNA分析工具下载乳腺癌组织及正常乳腺组织表达比较的数据集,分析发现在GSE4589、GSE38167、GSE61438等3个数据库中,在乳腺癌组织中存在26个相同的microRNA,其中8个上调,而我们实验验证发现hsa-miR-182在8例病理组织中的表达上调差异最显著(P=0.001),选定目的基因hsa-miR-182;qRT-PCR检测细胞中miR-182-5p的表达,结果显示,与MCF-10A相比,miR-182-5p在MDA-MB-231、T47D、MDA-MB-453、MCF-7中表达上调(P<0.05);转染miR-182-5p干扰质粒,qRT-PCR检测细胞中miR-182-5p的表达情况。结果显示,miR-182-5p表达显著降低(P=0.003),提示转染成功;Transwell侵袭结果显示,MDAMB-231细胞敲低miR-182-5p,与对照组相比,体外侵袭能力明显降低(P=0.002);Western印迹检测转染miR-182-5p干扰质粒时,MDA-MB-231中上皮-间质转化(epithelial-mesenchymal transition,EMT)相关标志物的表达情况,结果显示,与对照组相比,敲低miR-182-5p使细胞中上皮-钙黏着蛋白(E-cadherin)表达上调,神经-钙黏着蛋白(N-cadherin)、波形蛋白(vimentin)表达下调。为研究探讨miR-182-5p的靶蛋白,采用在线预测软件预测可能与miR-182-5p结合的靶蛋白,cytoscape构建蛋白质互作网络图并筛选出hub基因;双荧光素酶结果证实,miR-182-5p可与EP300靶向结合(P=0.001);采用qRT-PCR、Western印迹检测转染miR-182-5p干扰质粒后EP300在mRNA及蛋白质水平的表达,结果显示,与对照组相比,在敲低miR-182-5p组中EP300在mRNA及蛋白质的表达上调(P=0.001)。综上所述,miR-182-5p可靶向调节EP300,促进乳腺癌细胞的侵袭与转移。  相似文献   

8.
Ovarian cancer is one of the leading malignancies in women and the 5-year survival rate of ovarian cancer still remains poor. In the present study, we aimed to investigate the interaction between the miR-126-3p and PLXNB2 in the progression of ovarian cancer. The qRT-PCR data revealed a reduction of miR-126-3p level in ovarian cancer tissues comparing to the adjacent normal tissues. Over-expression of miR-126-3p in ovarian cancer cells suppressed cell proliferation and invasion and the phosphorylation of AKT and ERK1/2. The cell cycle assay results showed that the over-expression of miR-126-3p induced cells in G1-phase and reduced cells in S-phase. We further performed bioinformatics analysis and luciferase assay to investigate the relationship between miR-126-3p and PLXNB2 in ovarian cancer cells. The results of TargetScan suggested that PLXNB2 is a direct target of miR-126-3p in ovarian cancer cells, and luciferase assay confirmed bioinformatics prediction. Knocking down of PLXNB2 with PLXNB2 siRNA results in repressed ovarian cancer cell proliferation and invasion, and decreased phosphorylation of AKT and ERK1/2, which is similar to the effect of over-expression of miR-126-3p in OC cells. The synergistic effect of combination of miR-126-3p over-expression and PLXNB2 down-regulation on the cell growth viability, cell colony, and cell invasion was also identified. All these findings indicated that miR-126-3p is involved in the progression of ovarian cancer via direct regulating PLXNB2.  相似文献   

9.
The functions of miR-182-5p in the pathogenesis of diabetic nephropathy (DN) remain largely unclear. Here, we studied the roles and relationship between miR-182-5p and CD2AP in the development of DN. We used real-time polymerase chain reaction (PCR) to compare miR-182-5p expression between DN and control groups, while computational analysis and luciferase assays were used to confirm CD2AP as a miR-182-5p target. Western blot and real-time PCR were then used to measure the messenger RNA (mRNA) and protein expression of CD2AP in the presence of miR-182-5p. The results showed that miR-182-5p was highly expressed in cells isolated from people with DN. In addition, the luciferase activity of cells transfected with wild-type/mutant CD2AP confirmed CD2AP as a direct target of miR-182-5p. The expression levels of CD2AP mRNA and protein were much lower in the DN group compared with that in the normal group. In addition, the expression levels of CD2AP mRNA and protein were evidently increased by a miR-182-5p inhibitor, but notably downregulated by miR-182-5p mimics or CD2AP small interfering RNA (siRNA). Furthermore, miR-182-5p and CD2Ap siRNA significantly reduced the survival rate and viability of transfected cells, while the miR-182-5p inhibitor exhibited an opposite effect. These findings indicated the presence of a negative regulatory relationship between miR-182-5p and CD2AP in podocytes cells and suggested that the overexpression of miR-182-5p contributes to the pathogenesis of DN.  相似文献   

10.
《Genomics》2022,114(3):110360
This research focused on novel molecular mechanisms underlying microRNA (miR)-182-5p in ulcerative colitis (UC). Colon tissues were obtained from UC patients, and dextrose sodium sulfate (DSS)-induced mouse and interleukin-1β (IL-1β)-induced Caco-2 cell models were generated. Then, miR-182-5p, SMARCA5, and the Wnt/β-catenin signaling pathway were altered in IL-1β-stimulated Caco-2 cells and DSS-treated mice to assess their function. MiR-182-5p and SMARCA5 were upregulated and DNMT3A, β-catenin, and Cyclin D1 were downregulated in UC patients, IL-1β-stimulated Caco-2 cells, and DSS-treated mice. Mechanistically, miR-182-5p targeted DNMT3A to upregulate SMARCA5, thus blocking the Wnt/β-catenin signaling pathway. Moreover, SMARCA5 silencing or Wnt/β-catenin signaling pathway activation repressed apoptosis and augmented proliferation and epithelial barrier function of IL-1β-stimulated Caco-2 cells. SMARCA5 silencing annulled the impacts of miR-182-5p overexpression on IL-1β-stimulated Caco-2 cells. SMARCA5 silencing or miR-182-5p inhibition ameliorated intestinal barrier dysfunction in DSS-treated mice. Collectively, miR-182-5p aggravates UC by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation.  相似文献   

11.
The tumor protein (TP) p63/microRNAs functional network may play a key role in supporting the response of squamous cell carcinomas (SCC) to chemotherapy. We show that the cisplatin exposure of SCC-11 cells led to upregulation of miR-297, miR-92b-3p, and miR-485-5p through a phosphorylated ΔNp63α-dependent mechanism that subsequently modulated the expression of the protein targets implicated in DNA methylation (DNMT3A), histone deacetylation (HDAC9), and demethylation (KDM4C). Further studies showed that mimics for miR-297, miR-92b-3p, or miR-485-5p, along with siRNA against and inhibitors of DNMT3A, HDAC9, and KDM4C modulated the expression of DAPK1, SMARCA2, and MDM2 genes assessed by the quantitative PCR, promoter luciferase reporter, and chromatin immunoprecipitation assays. Finally, the above-mentioned treatments affecting epigenetic enzymes also modulated the response of SCC cells to chemotherapeutic drugs, rendering the resistant SCC cells more sensitive to cisplatin exposure, thereby providing the groundwork for novel chemotherapeutic venues in treating patients with SCC.  相似文献   

12.
The human endometrial carcinoma is one of the most common female malignancies, and there is an urgent requirement to explore new therapeutic strategies. There is accumulating evidence that microRNAs (miRNAs) can serve as potential diagnostic and prognostic biomarkers for various types of cancer, but the significance of miR-582-5p still remains largely unknown in the endometrial carcinoma. The aims of this study were to understand and identify the influence of miR-582-5p on the proliferation and apoptosis of human endometrial carcinoma and its relevant mechanism. First, quantitative real-time PCR (qRT-PCR) was used to detect miR-582-5p and AKT3 expression in human tissue samples and cells. Then, CyQuant assay and 2D colony assay were employed to evaluate cell proliferation. Western blotting was used to determine protein expression. Subsequently, the luciferase reporter assay was used to identify the target of miR-582-5p. Finally, Annexin V assay was used to detect cell apoptosis. We found that miR-582-5p expression was significantly decreased in human endometrial carcinoma tissues, and miR-582-5p upregulation in human endometrial carcinoma cells inhibit cell proliferation and promote apoptosis. Moreover, AKT3 was validated as a target of miR-582-5p and AKT3 expression was inversely correlated with miR-582-5p expression. Besides, AKT3 upregulation efficiently abrogates the effect of miR-582-5p on the cells. These results demonstrated that miR-582-5p regulates cell proliferation and apoptosis in human endometrial carcinoma via AKT3. Thus, miR-582-5p represents a potential therapeutic target in human endometrial carcinoma meriting further investigation.  相似文献   

13.
14.
15.
Chronic rhinosinusitis (CRS) is featured with chronic symptoms of inflammation or infection in the nasal and sinus tissues. MicroRNAs (miRNAs/miRs), such as dysregulated expression of miR-125b and miR-26a, has been previously demonstrated to be related to CRS. The present study is intended to define the role of miR-335-5p in inflammation and the related mechanism in a mouse model of CRS. The differentially expressed genes associated with CRS were screened by microarray analysis. The targeting relationship between miR-335-5p and TPX2 was analyzed by target prediction program and dual luciferase reporter gene assay. The mouse model of CRS was established, and mice were introduced with miR-335-5p mimics, miR-335-5p inhibitors, or siRNA against TPX2 to explore the regulatory functions of miR-335-5p. The regulatory effect of miR-335-5p on inflammation with the involvement of the AKT signaling pathway was also analyzed with the expression of inflammatory cytokines and AKT signaling pathway-related factors measured. It was indicated that miR-335-5p regulated the TPX2 gene-mediated AKT signaling pathway. TPX2 was identified as a target gene of miR-335-5p, and miR-335-5p elevation inhibited the activation of the AKT signaling pathway. In mice with CRS, up-regulation of miR-335-5p or silence of TPX2 inhibited the inflammation, as evidenced by decreased levels of TNF-α, IL-6 and IL-8, and higher levels of GSK3β and IL-10. Collectively, miR-335-5p inhibits the activation of AKT signaling pathway by negatively mediating TPX2, which may confer anti-inflammatory protection in CRS.  相似文献   

16.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

17.
The current study aims to evaluate whether peripheral blood miR-324-5p could be used to differentiate patients with metabolic disorders and healthy controls. Our data showed that miR-324-5p levels were elevated in the peripheral blood of patients with hyperglycemia or hyperlipidemia. In addition, the expression of miR-324-5p was enhanced in the peripheral blood and liver of db/db mice. Further study indicated that overexpression of miR-324-5p reduced the activation of the AKT/GSK pathway and increased lipid accumulation, while the inhibition of miR-324-5p activated the AKT/GSK pathway and decreased lipid accumulation. A dual luciferase assay revealed that Rho-associated coiled-coil containing protein kinase 1 (ROCK1) was a target gene of miR-324-5p. In addition, silencing ROCK1 deteriorated lipid and glucose metabolism. More importantly, knockdown of ROCK1 reversed the miR-324-5p inhibitor-induced improvement of glucose and lipid metabolism. In summary, miR-324-5p plays a regulatory role in glucose and lipid metabolism by targeting ROCK1, which is involved in metabolic disorders. The use of miR-324-5p in diagnosing metabolic syndrome is worth investigating and may benefit patients.  相似文献   

18.
19.
The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients. Exogenous miR-542-3p suppressed glioblastoma cell invasion through not only targeting AKT1 itself but also directly down-regulating its two important upstream regulators, namely, integrin-linked kinase and PIK3R1. Notably, overexpressing miR-542-3p decreased AKT1 phosphorylation and directly and indirectly repressed nuclear translocation and transactivation activity of β-catenin to exert its anti-invasive effect. Furthermore, the miR-542-3p expression level negatively correlated with AKT activity as well as levels of integrin-linked kinase and PIK3R1 in human astrocytoma specimens. These findings suggest that miR-542-3p acts as a negative regulator in astrocytoma progression and that miR-542-3p down-regulation contributes to aberrant activation of AKT signaling, leaving open the possibility that miR-542-3p may be a potential therapeutic target for high grade astrocytoma.  相似文献   

20.
The potential usage of curcumin in diverse human diseases has been widely studied, including arteriosclerosis (AS). This study focused on investigating the relationship between curcumin and AS-associated microRNA, which may provide a better understanding of curcumin in a different mechanism. Human microvascular endothelial HMEC-1 cells were treated by curcumin alone or oxidized low-density lipoprotein (ox-LDL) plus curcumin, after which the following parameters were analyzed: cell viability, migration, and the expression of AS-associated factors. The regulatory effects of curcumin on miR-126 and signaling pathways involved in AS were then studied. Further, an animal model of AS was stimulated by feeding rabbits with 1% cholesterol diet. The effects of curcumin on the animal model were explored. We found that curcumin treatment significantly reduced HMEC-1 cells viability, migration, and the protein levels of MMP-2, MMP-9, and vascular endothelial growth factor (VEGF) in the presence or absence of ox-LDL. Meanwhile, the expression of VEGFR1 and VEGFR2 was repressed by curcumin. miR-126 was upregulated by curcumin. The abovementioned effects of curcumin on HMEC-1 cells were all attenuated when miR-126 was silenced. And also, VEGF was a target gene of miR-126, and curcumin could inhibit the activation of PI3K/AKT JAK2/STAT5 signaling pathways via miR-126. The effects of curcumin and its regulation on miR-126 and VEGF were confirmed in the animal model of AS. To sum up, curcumin exerted potent anti-AS property possibly via upregulating miR-126 and thereby inhibiting PI3K/AKT and JAK2/STAT5 signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号