首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic fibers are major components of the extracellular matrix (ECM) in the aorta and support a life-long cycling of stretch and recoil. Elastic fibers are formed from mid-gestation throughout early postnatal development and the synthesis is regulated at multiple steps, including coacervation, deposition, cross-linking, and assembly of insoluble elastin onto microfibril scaffolds. To date, more than 30 molecules have been shown to associate with elastic fibers and some of them play a critical role in the formation and maintenance of elastic fibers in vivo. Because the aorta is subjected to high pressure from the left ventricle, elasticity of the aorta provides the Windkessel effect and maintains stable blood flow to distal organs throughout the cardiac cycle. Disruption of elastic fibers due to congenital defects, inflammation, or aging dramatically reduces aortic elasticity and affects overall vessel mechanics. Another important component in the aorta is the vascular smooth muscle cells (SMCs). Elastic fibers and SMCs alternate to create a highly organized medial layer within the aortic wall. The physical connections between elastic fibers and SMCs form the elastin-contractile units and maintain cytoskeletal organization and proper responses of SMCs to mechanical strain. In this review, we revisit the components of elastic fibers and their roles in elastogenesis and how a loss of each component affects biomechanics of the aorta. Finally, we discuss the significance of elastin-contractile units in the maintenance of SMC function based on knowledge obtained from mouse models of human disease.  相似文献   

2.
Elastic fibers provide recoil to tissues that undergo repeated stretch, such as the large arteries and lung. These large extracellular matrix (ECM) structures contain numerous components, and our understanding of elastic fiber assembly is changing as we learn more about the various molecules associated with the assembly process. The main components of elastic fibers are elastin and microfibrils. Elastin makes up the bulk of the mature fiber and is encoded by a single gene. Microfibrils consist mainly of fibrillin, but also contain or associate with proteins such as microfibril associated glycoproteins (MAGPs), fibulins, and EMILIN-1. Microfibrils were thought to facilitate alignment of elastin monomers prior to cross-linking by lysyl oxidase (LOX). We now know that their role, as well as the overall assembly process, is more complex. Elastic fiber formation involves elaborate spatial and temporal regulation of all of the involved proteins and is difficult to recapitulate in adult tissues. This report summarizes the known interactions between elastin and the microfibrillar proteins and their role in elastic fiber assembly based on in vitro studies and evidence from knockout mice. We also propose a model of elastic fiber assembly based on the current data that incorporates interactions between elastin, LOXs, fibulins and the microfibril, as well as the pivotal role played by cells in structuring the final functional fiber.  相似文献   

3.
We describe the generation of a monoclonal antibody library to ocular zonule components and the characterization of three monoclonal antibodies: 1) one specific for microfibrillar associated glycoprotein (MAGP), a component of both ocular zonules and microfibrils of elastin fibers, 2) an antibody to an as yet unidentified 70,000 dalton antigen that is present in abundance in the extracellular matrix (ECM) of elastin-producing cells, and 3) an antibody reacting with the 67000 dalton subunit of the elastin receptor. The presence of antigenic determinants common to the ocular zonule and elastic fiber microfibrils suggests that zonules, which can be obtained in relatively pure form, can provide a valuable resource for characterizing proteins common to both microfibrillar structures.  相似文献   

4.
The two morphologically different constituents of the mature elastic fiber, the central amorphous and the peripheral microfibrillar components, have been separated and partially characterized. A pure preparation of elastic fibers was obtained from fetal bovine ligamentum nuchae by extraction of the homogenized ligament with 5 M guanidine followed by digestion with collagenase. The resultant preparation consisted of elastic fibers which were morphologically identical with those seen in vivo. The microfibrillar components of these elastic fibers were removed either by proteolytic enzymes or by reduction of disulfide bonds with dithioerythritol in 5 M guanidine. The microfibrils solubilized by both methods were rich in polar, hydroxy, and sulfur-containing amino acids and contained less glycine, valine, and proline than the amorphous component of the elastic fiber. In contrast, the amino acid composition of the amorphous component was identical with that previously described for elastin. This component demonstrated selective susceptibility to elastase digestion, but was relatively resistant to the action of other proteolytic enzymes and to reduction. These observations establish that the microfibrils consist of a different connective tissue protein (or proteins) that is neither collagen nor elastin. During embryologic development the microfibrils form an aggregate structure before the amorphous component is secreted. These microfibrils may therefore play a primary role in the morphogenesis of the elastic fiber.  相似文献   

5.
Elastic and collagenous networks in vascular diseases   总被引:3,自引:0,他引:3  
Supravalvular aortic stenosis (SVAS), Marfan syndrome (MFS) and Ehlers-Danlos syndrome type IV (EDS IV) are three clinical entities characterized by vascular abnormalities that result from mutations of structural components of the extracellular matrix (ECM). Analyses of naturally occurring human mutations and of artificially generated deficiencies in the mouse have provided insights into the pathogenesis of these heritable disorders of the connective tissue. SVAS is associated with haploinsufficiency of elastin, one of the two major components of the elastic fibers. SVAS is characterized by narrowing of the arterial lumen due to the failure of regulation of cellular proliferation and matrix deposition. Mutations in fibrillin 1 are the cause of dissecting aneurysm leading to rupture of the ascending aorta. Fibrillin-1 is the building block of the microfibrils that span the entire thickness of the aortic wall and are a major component of the elastic fibers that reside in the medial layer. The vascular hallmark of EDS IV is rupture of large vessels. The phenotype is caused by mutations in type III collagen. The mutations ultimately affect the overall architecture of the collagenous network and the biomechanical properties of the adventitial layer of the vessel wall. Altogether, these genotype-phenotype correlations document the diversified contributions of distinct extracellular macroaggregates to the assembly and function of the vascular matrix.  相似文献   

6.
Vascular smooth muscle cells (SMCs) populate in the media of the blood vessel, and play an important role in the control of vasoactivity and the remodeling of the vessel wall. Blood vessels are constantly subjected to hemodynamic stresses, and the pulsatile nature of the blood flow results in a cyclic mechanical strain in the vessel walls. Accumulating evidence in the past two decades indicates that mechanical strain regulates vascular SMC phenotype, function and matrix remodeling. Bone marrow mesenchymal stem cell (MSC) is a potential cell source for vascular regeneration therapy, and may be used to generate SMCs to construct tissue-engineered vascular grafts for blood vessel replacements. In this review, we will focus on the effects of mechanical strain on SMCs and MSCs, e.g., cell phenotype, cell morphology, cytoskeleton organization, gene expression, signal transduction and receptor activation. We will compare the responses of SMCs and MSCs to equiaxial strain, uniaxial strain and mechanical strain in three-dimensional culture. Understanding the hemodynamic regulation of SMC and MSC functions will provide a basis for the development of new vascular therapies and for the construction of tissue-engineered vascular grafts.  相似文献   

7.
Microfibrils are striated tubules that play a role in the formation of elastin fibers by providing a scaffold upon which newly synthesized elastin is deposited. Ultrastructural and staining studies also demonstrate microfibrils that terminate where elastin is sparse or absent in basal laminae, plasma membranes, and the collagenous matrix. The most striking accumulation of microfibrils is found in the zonule of Zinn, the transparent and elastic suspensory ligament of the lens, which contains no elastin. Application of immunocytochemical staining with a peroxidase-antiperoxidase (PAP) procedure demonstrates that fibronectin is associated with the microfibrils of the zonule and aorta. Aggregates of microfibrils are identical to oxytalan ('acid enduring') fibers that have been described in peridontal membranes and other sites subject to mechanical stress and they can be found in sites as disparate as the rabbit zonule, rat hepatic stroma and human cardiac papillary muscle, indicating that microfibrils are a widely distributed connective tissue element with a function that extends beyond elastogenesis; their association with fibronectin and localization suggests that they serve as an elastic anchoring component of the extracellular matrix.  相似文献   

8.
Elastic fibers are composed of a central core of elastin that is amorphous and electron-lucent in conventional transmission electron micrographs and peripheral microfibrils. A complex infrastructure within the amorphous elastin of mature rat aorta is made visible by fixation and staining with a glutaraldehyde-ruthenium red mixture in phosphate buffer or osmium-ruthenium red in cacodylate buffer. The infrastructure is composed of at least two interlacing but distinct elastic structural components; a framework of circumferentially orientated microfibrils and a three-dimensional meshwork of filaments that permeate the fiber. The latter resembles a reticulum that has previously been observed in freeze-fractured and negatively stained elastin and attributed to the supramolecular organization of elastin. Microfibrils also extend from the core of the elastic fiber into the surrounding matrix where they appear to function as anchoring fibers. These observations indicate that the elastic properties of the arterial wall are an integrated function of both elastin and microfibrils.  相似文献   

9.
Elastic fibers consist of two morphologically distinct components: elastin and 10-nm fibrillin-containing microfibrils. During development, the microfibrils form bundles that appear to act as a scaffold for the deposition, orientation, and assembly of tropoelastin monomers into an insoluble elastic fiber. Although microfibrils can assemble independent of elastin, tropoelastin monomers do not assemble without the presence of microfibrils. In the present study, immortalized ciliary body pigmented epithelial (PE) cells were investigated for their potential to serve as a cell culture model for elastic fiber assembly. Northern analysis showed that the PE cells express microfibril proteins but do not express tropoelastin. Immunofluorescence staining and electron microscopy confirmed that the microfibril proteins produced by the PE cells assemble into intact microfibrils. When the PE cells were transfected with a mammalian expression vector containing a bovine tropoelastin cDNA, the cells were found to express and secrete tropoelastin. Immunofluorescence and electron microscopic examination of the transfected PE cells showed the presence of elastic fibers in the matrix. Biochemical analysis of this matrix showed the presence of cross-links that are unique to mature insoluble elastin. Together, these results indicate that the PE cells provide a unique, stable in vitro system in which to study elastic fiber assembly.  相似文献   

10.
Among elastic system fibers, oxytalan fibers are known as a ubiquitous component of the periodontal ligament, but the localization and role of elastin-containing fibers, i.e., elastic and elaunin fibers, has yet to be clarified. In this study, we immunohistochemically investigated the localization of elastin and fibrillin, major proteins of elastin-containing fibers in the periodontal ligament of rat lower first molars. At the light microscope level, distribution of elastin-positive fibers was not uniform but often concentrated in the vicinity of blood vessels in the apical region of the ligament. In contrast, fibrillin-positive fibers were more widely distributed throughout the ligament, and the pattern of their distribution was comparable to the reported distribution of oxytalan fibers. At the ultrastructural level, assemblies or bundles of abundant fibrillin-containing microfibrils were intermingled with a small amount of elastin. This observation indicated that elastin-positive fibers observed under the light microscope were elaunin fibers. No mature elastic fibers, however, were found in the ligament. These results show that the major components of elastic system fibers in the periodontal ligament of the rat mandibular first molar were oxytalan and elaunin fibers, suggesting that the elastic system fibers play a role in the mechanical protection of the vascular system.  相似文献   

11.
Vessels remodel to compensate for increases in blood flow/pressure. The chronic exposure of blood vessels to increased flow and circulatory redox-homocysteine may injure vascular endothelium and disrupt elastic laminae. In order to understand the role of extracellular matrix (ECM) degradation in vascular structure and function, we isolated human vascular smooth muscle cells (VSMC) from normal and injured coronary arteries. The apparently normal vessels were isolated from explanted human hearts. The vessels were injured by inserting a blade into the lumen of the vessel, which damages the inner elastic laminae in the vessel wall and polarizes the VSMC by producing a pseudopodial phenotypic shift in VSMC. This shift is characteristic of migratory, invasive, and contractile nature of VSMC. We measured extracellular matrix metalloproteinases (MMPs), tissue plasminogen activator (tPA), tissue inhibitor of metalloproteinase (TIMP), and collagen I expression in VSMC by specific substrate zymography and Northern blot analyses. The injured and elastin peptide, val-gly-val-ala-pro-gly, treated VSMC synthesized active MMPs and reduced expression of TIMP. The level of tPA and collagen type I was induced in the injured, invasive VSMC and in the val-gly-val-ala-pro-gly treated cells. To demonstrate the angiogenic role of elastin peptide to VSMC we performed in vitro organ culture with rings from normal coronary artery. After 3 days in culture the vascular rings in the collagen gel containing elastin peptide elaborated MMP activity and sprouted and grew. The results suggest that val-gly-val-ala-pro-gly peptide generated at the site of proteolysis during vascular injury may have angiogenic activity.  相似文献   

12.
The formation of a mature elastic fiber is thought to proceed by the deposition of elastin on pre-existing microfibrils (10-12 nm in diameter). Immunohistochemical evidence has suggested that in developing tissues such as aorta and ligamentum nuchae, small amounts of elastin are associated with microfibrils but are not detected at the light microscopic and ultrastructural levels. Dermal tissue contains a complex elastic fiber system consisting of three types of fibers--oxytalan, elaunin, and elastic--which are believed to differ in their relative contents of microfibrils and elastin. According to ultrastructural analysis, oxytalan fibers contain only microfibrils, elaunin fibers contain small quantities of amorphous elastin, and elastic fibers are predominantly elastin. Using indirect immunofluorescence techniques, we demonstrate in this study that nonamorphous elastin is associated with the oxytalan fibers. Frozen sections of normal skin were incubated with antibodies directed against human aortic alpha elastin and against microfibrillar proteins isolated from cultured calf aortic smooth muscle cells. The antibodies to the microfibrillar proteins and elastin reacted strongly with the oxytalan fibers of the upper dermis. Oxytalan fibers therefore are composed of both microfibrils and small amounts of elastin. Elastin was demonstrated extracellularly in human skin fibroblasts in vitro by indirect immunofluorescence. The extracellular association of nonamorphous elastin and microfibrils on similar fibrils was visualized by immunoelectron microscopy. Treatment of these cultures with sodium dodecyl sulfate/mercaptoethanol (SDS/ME) solubilized tropoelastin and other proteins that reacted with the antibodies to the microfibrillar proteins. It was concluded that the association of the microfibrils with nonamorphous elastin in intact dermis and cultured human skin fibroblasts may represent the initial step in elastogenesis.  相似文献   

13.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

14.
15.
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.  相似文献   

16.
Summary Fibrous components other than collagen fibrils in the reticular fiber of mouse lymph node were studied by electron microscopy. Bundles of microfibrils not associated by elastin and single microfibrils dispersed among collagen fibrils were present. The diameter of the microfibrils was 13.29±2.43 nm (n=100). Elastin-associated microfibrils occurred at the periphery of the reticular fiber. Elastin was enclosed by microfibrils, thus forming the elastic fiber, which was clearly demonstrated by tannic acid-uranyl acetate staining. In the reticular fiber of lymph nodes, the elastic fiber consisted of many more microfibrils and a small amount of elastin. These microfibrils, together with the collagen fibrils, may contribut to the various functions of the reticular fibers.  相似文献   

17.
Decreased elastin in mice (Eln+/?) yields a functioning vascular system with elevated blood pressure and increased arterial stiffness that is morphologically distinct from wild-type mice (WT). Yet, function is retained enough that there is no appreciable effect on life span and some mechanical properties are maintained constant. It is not understood how the mouse modifies the normal developmental process to produce a functioning vascular system despite a deficiency in elastin. To quantify changes in mechanical properties, we have applied a fiber-based constitutive model to mechanical data from the ascending aorta during postnatal development of WT and Eln+/? mice. Results indicate that the fiber-based constitutive model is capable of distinguishing elastin amounts and identifying trends during development. We observe an increase in predicted circumferential stress contribution from elastin with age, which correlates with increased elastin amounts from protein quantification data. The model also predicts changes in the unloaded collagen fiber orientation with age, which must be verified in future work. In Eln+/? mice, elastin amounts are decreased at each age, along with the predicted circumferential stress contribution of elastin. Collagen amounts in Eln+/? aorta are comparable to WT, but the predicted circumferential stress contribution of collagen is increased. This may be due to altered organization or structure of the collagen fibers. Relating quantifiable changes in arterial mechanics with changes in extracellular matrix (ECM) protein amounts will help in understanding developmental remodeling and in producing treatments for human diseases affecting ECM proteins.  相似文献   

18.
Elastic and collagen fibers are well known to be the major load-bearing extracellular matrix (ECM) components of the arterial wall. Studies of the structural components and mechanics of arterial ECM generally focus on elastin and collagen fibers, and glycosaminoglycans (GAGs) are often neglected. Although GAGs represent only a small component of the vessel wall ECM, they are considerably important because of their diverse functionality and their role in pathological processes. The goal of this study was to study the mechanical and structural contributions of GAGs to the arterial wall. Biaxial tensile testing was paired with multiphoton microscopic imaging of elastic and collagen fibers in order to establish the structure–function relationships of porcine thoracic aorta before and after enzymatic GAG removal. Removal of GAGs results in an earlier transition point of the nonlinear stress–strain curves \((p<0.05)\). However, stiffness was not significantly different after GAG removal treatment, indicating earlier but not absolute stiffening. Multiphoton microscopy showed that when GAGs are removed, the adventitial collagen fibers are straighter, and both elastin and collagen fibers are recruited at lower levels of strain, in agreement with the mechanical change. The amount of stress relaxation also decreased in GAG-depleted arteries \((p<0.05)\). These findings suggest that the interaction between GAGs and other ECM constituents plays an important role in the mechanics of the arterial wall, and GAGs should be considered in addition to elastic and collagen fibers when studying arterial function.  相似文献   

19.
Elastic fibers play the principal roles in providing elasticity and integrity to various types of human organs, such as the arteries, lung, and skin. However, the molecular mechanism of elastic fiber assembly that leads to deposition and crosslinking of elastin along microfibrils remains largely unknown. We have previously shown that developing arteries and neural crest EGF-like protein (DANCE) (also designated fibulin-5) is essential for elastogenesis by studying DANCE-deficient mice. Here, we report the identification of latent transforming growth factor-beta-binding protein 2 (LTBP-2), an elastic fiber-associating protein whose function in elastogenesis is not clear, as a DANCE-binding protein. Elastogenesis assays using human skin fibroblasts reveal that fibrillar deposition of DANCE and elastin is largely dependent on fibrillin-1 microfibrils. However, downregulation of LTBP-2 induces fibrillin-1-independent fibrillar deposition of DANCE and elastin. Moreover, recombinant LTBP-2 promotes deposition of DANCE onto fibrillin-1 microfibrils. These results suggest a novel regulatory mechanism of elastic fiber assembly in which LTBP-2 regulates targeting of DANCE on suitable microfibrils to form elastic fibers.  相似文献   

20.
Altered degradation of extracellular matrix (ECM) underlies vascular remodeling, a hallmark in the pathogenesis of cardiovascular diseases including hypertension and aneurysmal dilatation. Although alcohol is recognized as a risk factor for certain cardiovascular disease states, its role in vascular remodeling has not been completely explored. We studied the effect of chronic alcohol consumption on upregulation of the enzymatic activity of matrix metalloproteinase-2 (MMP-2) as a possible pathway for large vessel remodeling. For this purpose, female rats were placed on one of three diets: a modified Lieber-DeCarli liquid diet containing 35% ethanol-derived calories, a pair-fed liquid diet with ethanol replaced by isocaloric maltose-dextrin, or a standard rat pellet. Weekly blood alcohol concentration averaged 117+/-7.9 mg/dl for the alcohol-fed rats. At 2, 4, and 72 weeks, aortas were removed and processed for measuring MMPs activity by gelatin zymography. Aortic extracts from rats on long-term (72 weeks), but not the short-term (2 and 4 weeks), alcohol diets showed increased MMP-2 activity. Furthermore, histochemical analysis of the aortas showed distinct disruption of the elastic fibers only in the 72 weeks alcohol-fed rats, compared to the control animals. These observations demonstrate that long-term alcohol consumption up-regulates MMP-2 activity, which is coincident with the alteration of aortic ECM composition through the degradation of vascular elastin components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号