首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genistein affects lipogenesis and lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Genistein is a phytoestrogen found in several plants eaten by humans and food-producing animals and exerting a wide spectrum of biological activity. In this experiment, the impact of genistein on lipogenesis and lipolysis was studied in isolated rat adipocytes. Incubation of the cells (106 cells/ml in plastic tubes at 37°C with Krebs-Ringer buffer, 90 min) with genistein (0.01, 0.3, 0.6 and 1 mM) clearly restricted (1 nM) [U-14C]glucose conversion to total lipids in the absence and presence of insulin. When [14C]acetate was used as the substrate for lipogenesis, genistein (0.01, 0.1 and 1 mM) exerted a similar effect. Thus, the anti-lipogenetic action of genistein may be an effect not only of alteration in glucose transport and metabolism, but this phytoestrogen can also restrict the fatty acids synthesis and/or their estrification. Incubation of adipocytes with estradiol at the same concentrations also resulted in restriction of lipogenesis, but the effect was less marked. Genistein (0.1 and 1 mM) augmented basal lipolysis in adipocytes. This process was strongly restricted by insulin (1 μM) and H-89 (an inhibitor of protein kinase A; 50 μM) and seems to be primarily due to the inhibitory action of the phytoestrogen on cAMP phosphodiesterase in adipocytes. Genistein at the smallest concentration (0.01 mM) augmented epinephrine-stimulated (1 μM) lipolysis but failed to potentiate lipolysis induced by forskolin (1 μM) or dibutyryl-cAMP (1 mM). These results suggest genistein action on the lipolytic pathways before activation of adenylate cyclase. The restriction of lipolysis stimulated by several lipolytic agents – epinephrine, forskolin and dibutyryl-cAMP were observed when adipocytes were incubated with genistein at highest concentrations (0.1 and 1 mM). These results prove the inhibitory action of this phyestrogen on the final steps of the lipolytic cascade, i.e. on protein kinase A or hormone sensitive lipase. Estradiol, added to the incubation medium, did not affect lipolysis. It can be concluded that genistein significantly affects lipogenesis and lipolysis in isolated rat adipocytes.  相似文献   

2.
3.
Azaftig is an urinary proteoglycan present in some cancer and AIDS patients experiencing weight loss. Administration of azaftig to mice results in weight loss that is associated with loss of fat depot. So far, very little is known about the mechanism underlying loss of fat depot in mice or weight loss in patients excreting azaftig. Augmentation of lipolysis may be one mechanism that can cause reduction of fat depot. Therefore, the present study was designed to examine the effect of azaftig on lipolysis by adipocytes derived from obese rats and humans. Results show a dose-dependent potentiation of lipolysis by azaftig in both rat and human adipocytes.  相似文献   

4.
SPART is a gene coding for a multifunctional protein called spartin, localized in various organelles of human cells. Mutations in the coding region are responsible for a hereditary form of spastic paraplegia called Troyer syndrome while the epigenetic silencing has been demonstrated for some types of tumors. The main functions of this gene are associated to endosomic trafficking and receptor degradation, microtubule interaction, cytokinesis, fatty acids and oxidative metabolism. Spartin has been shown to be a target regulated by STAT3 and localizes also at the level of the mitochondrial outer membrane, where it forms part of a complex maintaining the integrity of the membrane potential. The most recent evidences report a downregulation of spartin in tumor tissues when compared to adjacent normal samples. This intriguing evidence supports further research aimed at clarifying the role of this protein in cancer development and metabolism.  相似文献   

5.
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.  相似文献   

6.
7.
Z Zhao  D Ni  I Ghozalli  SD Pirooz  B Ma  C Liang 《Autophagy》2012,8(9):1392-1393
UVRAG is a promoter of the autophagy pathway, and its deficiency may fuel the development of cancers. Intriguingly, our recent study has demonstrated that this protein also mediates the repair of damaged DNA and patrols centrosome stability, mechanisms that commonly prevent cancer progression, in a manner independent of its role in autophagy signaling. Given the central role of UVRAG in genomic stability and autophagic cleaning, it is speculated that UVRAG is a bona fide genome protector and that the decrease in UVRAG seen in some cancers may render these cells vulnerable to chromosomal damage, making UVRAG an appealing target for cancer therapy.  相似文献   

8.
Energy metabolism impairment is a central event in the pathophysiology of ischemia. The limited availability of glucose and oxygen strongly affects mitochondrial activity, thus leading to ATP depletion. In this setting, the switch to alternative energy sources could ameliorate cells survival by enhancing ATP production, thus representing an attractive strategy for ischemic treatment. In this regard, some studies have recently re-evaluated the metabolic role of glutamate and its potential to promote cell survival under pathological conditions. In the present review, we discuss the ability of glutamate to exert an “energizing role” in cardiac and neuronal models of hypoxia/reoxygenation (H/R) injury, focusing on the Na+/Ca2+ exchanger (NCX) and the Na+-dependent excitatory amino acid transporters (EAATs) as key players in this metabolic pathway.  相似文献   

9.
Arsenic is responsible for the contamination of water supplies in various parts of the world and poses a major risk to human health. Its toxicity and bioavailability depend on its speciation, which in turn, depends on microbial transformations, including reduction, oxidation and methylation. This review describes the development of bioprocesses for the treatment of arsenic-contaminated waters based on bacterial metabolism and biogeochemical cycling of arsenic.  相似文献   

10.
11.
12.
The use of arsenic‐containing compounds in cancer therapy is currently being re‐considered, after the recent approval of arsenic trioxide (Trisenox®) for the treatment of relapsed promyelocytic leukemia (PML). In an attempt to prepare a carrier system to minimize the toxicity of this drug, the aim of this study is to prepare and characterize liposomes encapsulating arsenic trioxide (ATO). For this, we prepared different types of liposomes entrapping ATO: large multilamellar (MLV), sonicated (SUV) and dried reconstituted vesicles (DRV). The techniques used were: thin film hydration, sonication and the DRV method, respectively. Two lipid compositions were studied for each liposome type, EggPC/Chol (1:1) and DSPC/Chol (1:1). After liposome preparation, drug encapsulation was evaluated by measuring arsenic in liposomes. For this, energy‐dispersive X‐ray fluorescence spectroscopy or atomic absorption was used. In addition, the retention of the drug in the liposomes was evaluated after incubating the liposomes in buffer at 37°C. The experimental results reveal that encapsulation of ATO in liposomes ranges between 0.003 and 0.506 mol/ mol of lipid, and is highest in the DRV vesicles and lowest in the small unilamellar vesicles, as anticipated. Considering the in vitro stability of ATO‐encapsulating liposomes: 1) For the PC/Chol liposomes (DRV and MLV), after 24 hours of incubation, more than 70% (or 90% in some cases) of the initially encapsulated amount of ATO was released. 2) The liposomes composed of DSPC/Chol could retain substantially higher amounts of ATO, especially the DRV liposomes (54% retained after 24 h). 3) In the case of PC/Chol, temperature of incubation has no effect on the ATO release after 24 hours, but affects the rate of ATO release in the MLV liposomes, while for the DSPC/Chol liposomes there is a slight increase (statistically insignificant) of ATO release at higher temperature.  相似文献   

13.
14.
15.
Leptin has emerged over the past decade as a key hormone not only in energy balance regulation but also in neuroendocrine and inflammatory processes. The aim of the present study was to evaluate whether hyperleptinemia deregulates neuropeptides during weight loss. A total of 86 post-pubertal obese adolescents (with or without hyperleptinemia) participated in one year of interdisciplinary weight loss therapy (clinical, nutritional, psychological and exercise-related). Adipokine and neuropeptide concentrations were measured by ELISA, visceral fat was measured by ultrasound and body composition was measured by pletismography. The hyperleptinemic patients presented a lower alpha-MSH concentration and higher NPY/AgRP ratio while the adiponectin/leptin (A/L) ratio was lower compared with the non-hyperleptinemic group. After therapy, significant improvements in BM, BMI, body fat mass, visceral and subcutaneous fat, HOMA-IR, QUICKI, total cholesterol and triglycerides were observed in both groups. Indeed, we observed significant increases in adiponectin and A/L as well as reductions in leptin and NPY/AgRP ratio in the hyperleptinemic group. In the stepwise multiple linear regression analysis with leptin concentration as the dependent variable, α-MSH and body fat mass (%) were the independent predictors to explain leptin concentration. For the entire group, we found positive correlations between leptinemia and BMI and body fat mass (%) as well as a negative correlation with free fat mass (%) and alpha-MSH. Finally, we verified negative correlations between adiponectin/leptin ratio with total cholesterol and LDL-c, only in hyperleptinemic patients. In conclusion, the hyperleptinemia in obese adolescents deregulates neuropeptides during weight loss.  相似文献   

16.
体内能量代谢是维持机体正常生理活动的基础,而脂肪细胞的脂解是能量代谢的核心反应之一,调控脂肪酸从TG库释放,后由血清白蛋白转运至体内各个组织以满足能量需要。如果脂解作用出现障碍,就会影响机体能量的平衡进而引发肥胖和胰岛素抵抗等疾病。表没食子儿茶素没食子酸酯(Epig  相似文献   

17.
Obesity has been proposed as an energy balance disorder in which the expansion of adipose tissue (AT) leads to unfavorable health outcomes. Even though adiposity represents the most powerful driving force for the development of insulin resistance (IR) and type 2 diabetes, mounting evidence points to “adipose dysregulation”, rather than fat mass accrual per se, as a key pathophysiological trigger of the obesity-linked metabolic complications. The dysfunctional fat, besides hypertrophic adipose cells and inflammatory cues, displays a reduced ability to form new adipocytes from the undifferentiated precursor cells (ie, the preadipocytes). The failure of adipogenesis poses a “diabetogenic” milieu either by promoting the ectopic overflow/deposition of lipids in non-adipose targets (lipotoxicity) or by inducing a dysregulated secretion of different adipose-derived hormones (ie, adipokines and lipokines). This novel and provocative paradigm (“expandability hypothesis”) further extends current “adipocentric view” implicating a reduced adipogenic capacity as a missing link between “unhealthy” fat expansion and impairment of metabolic homeostasis.  相似文献   

18.
Sirt1, a mammalian member of the sirtuin gene family, holds great potential for promoting longevity, preventing against disease and increasing cell survival. For example, studies suggest that the beneficial impact of caloric restriction in promoting longevity and cellular function may be mediated, in part, by Sirt1 through mechanisms involving PGC-1α, which plays important role in the regulation of cellular metabolism and inflammatory and antioxidant responses. Sirt1 may also interfere with mechanisms implicated in pathological disorders. We will present recent evidence indicating that Sirt1 may protect against Alzheimer's disease by interfering with the generation of β-amyloid peptides. We will discuss Sirt1 as a potential novel target, in addition to the development of Sirt1 activators for the prevention and treatment of Alzheimer's disease.  相似文献   

19.
A variety of approaches have been implemented to address the rising obesity epidemic, with limited success. I consider the success of weight loss efforts among a group of highly motivated people: those required to lose weight in order to qualify for a life-saving kidney transplantation. Out of 246 transplantation centers, I identified 156 (63%) with explicit body mass index (BMI) requirements for transplantation, ranging from 30 to 50 kg/m2. Using the United States national registry of transplant candidates, I examine outcomes for 29,608 obese deceased-donor transplant recipients between 1990 and 2010. I use value-added models to deal with potential endogeneity of center choice, in addition to correcting for sample selection bias arising from focusing on transplant recipients. Outcome variables measure BMI level and weight change (in BMI) between initial listing and transplantation. I hypothesize that those requiring weight loss to qualify for kidney transplantation will be most likely to lose weight. I find that the probability of severe and morbid obesity (BMI  35 kg/m2) decreases by 4 percentage points and the probability of patients achieving any weight loss increases by 22 percentage points at centers with explicit BMI eligibility criteria. Patients are also 13 percentage points more likely to accomplish clinically relevant weight loss of at least 5% of baseline BMI by transplantation at these centers. Nonetheless, I estimate an average decrease in BMI of only 1.7 kg/m2 for those registered at centers with BMI requirements. Further analyses suggest stronger intervention effects for patients whose BMI at listing exceeds thresholds as the distance from their BMI to the thresholds increases. Even under circumstances with great potential returns for weight loss, transplant candidates exhibit modest weight-loss. This suggests that, even in high-stakes environments, weight loss remains a challenge for the obese, and altering individual incentives may not be sufficient.  相似文献   

20.
Membrane lateral heterogeneity is accepted as a requirement for the function of biological membranes and the notion of lipid rafts gives specificity to this broad concept. However, the lipid raft field is now at a technical impasse because the physical tools to study biological membranes as a liquid that is ordered in space and time are still being developed. This has lead to a disconnection between the concept of lipid rafts as derived from biochemical and biophysical assays and their existence in the cell. Here, we compare the concept of lipid rafts as it has emerged from the study of synthetic membranes with the reality of lateral heterogeneity in biological membranes. Further application of existing tools and the development of new tools are needed to understand the dynamic heterogeneity of biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号