首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is a neurodegenerative disease induced by cholinergic neuron damage or amyloid-beta aggregation in the basal forebrain region and resulting in cognitive disorder. We previously reported on the neuroprotective effects of Betula platyphylla bark (BPB) in an amyloid-beta-induced amnesic mouse model. In this study, we obtained a cognitive-enhancing compound by assessing results using a scopolamine-induced amnesic mouse model. Our results show that oral treatment of mice with BPB and betulin significantly ameliorated scopolamine-induced memory deficits in both passive avoidance and Y-maze tests. In the Morris water maze test, administration of BPB and betulin significantly improved memory and cognitive function indicating the formation of working and reference memories in treated mice. Moreover, betulin significantly increased glutathione content in mouse hippocampus, and the increase was greater than that from betulinic acid treatment. We conclude that BPB and its active component betulin have potential as therapeutic, cognitive enhancer in AD.  相似文献   

2.
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology.PurposeThe present study aims to assess the neuroprotective effects of Qingyangshen (QYS), a Chinese herbal medicine, in AD cellular and animal models and to determine its underlying mechanisms involving ALP regulation.MethodsQYS extract was prepared and its chemical components were characterized by LC/MS. Then the pharmacokinetics and acute toxicity of QYS extract were evaluated. The neuroprotective effects of QYS extract were determined in 3XTg AD mice, by using a series of behavioral tests and biochemical assays, and the mechanisms were examined in vitro.ResultsOral administration of QYS extract improved learning and spatial memory, reduced carboxy-terminal fragments (CTFs), amyloid precursor protein (APP), Aβ and Tau aggregates, and inhibited microgliosis and astrocytosis in the brains of 3XTg mice. Mechanistically, QYS extract increased the expression of PPARα and TFEB, and promoted ALP both in vivo and in vitro.ConclusionQYS attenuates AD pathology, and improves cognitive function in 3XTg mice, which may be mediated by activation of PPARα-TFEB pathway and the subsequent ALP enhancement. Therefore, QYS may be a promising herbal material for further anti-AD drug discovery.  相似文献   

3.
Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.  相似文献   

4.
BackgroundAlzheimer's disease (AD) is the most prevalent cause of cognitive impairment and dementia worldwide. The pathobiology of the disease has been studied in the form of several hypotheses, ranging from oxidative stress, amyloid-beta (Aβ) aggregation, accumulation of tau forming neurofibrillary tangles (NFT) through metal dysregulation and homeostasis, dysfunction of the cholinergic system, and to inflammatory and autophagic mechanism. However, none of these hypotheses has led to confirmed diagnostics or approved cure for the disease.ObjectiveThis review is aimed as a basic and an encyclopedic short course into metals in AD and discusses the advances in chelation strategies and developments adopted in the treatment of the disease. Since there is accumulating evidence of the role of both biometal dyshomeostasis (iron (Fe), copper (Cu), and zinc (Zn)) and metal-amyloid interactions that lead to the pathogenesis of AD, this review focuses on unraveling therapeutic chelation strategies that have been considered in the treatment of the disease, aiming to sequester free and protein-bound metal ions and reducing cerebral metal burden. Promising compounds possessing chemically modified moieties evolving as multi-target ligands used as anti-AD drug candidates are also covered.Results and ConclusionSeveral multidirectional and multifaceted studies on metal chelation therapeutics show the need for improved synthesis, screening, and analysis of compounds to be able to effectively present chelating anti-AD drugs. Most drug candidates studied have limitations in their physicochemical properties; some enhance redistribution of metal ions, while others indirectly activate signaling pathways in AD. The metal chelation process in vivo still needs to be established and the design of potential anti-AD compounds that bi-functionally sequester metal ions as well as inhibit the Aβ aggregation by competing with the metal ions and reducing metal-induced oxidative damage and neurotoxicity may signal a bright end in chelation-based therapeutics of AD.  相似文献   

5.
BackgroundRadix Astragali (RA) consists of the dried root of Astragalus membranaceus Bunge and is one of the most frequently used dietetic Chinese herbs to treat inflammation and neurodegenerative disease among other conditions. Radix Astragali preparata (RAP) is a medicinal form of RA. RA and RAP have been used as anti-aging agent, however, the mechanisms underlying their effects are still unclear.PurposeConsidering the wide application of RA and RAP in clinical practice, it is necessary to identify the better product between the two and elucidate the molecular mechanism responsible for their anti-aging effects.Study DesignIn this study, network pharmacology integrated with molecular biology techniques were employed to explore the possible mechanism of RA and RAP against aging.MethodsAging animal models were constructed by exposure to D-galactose (D-gal), and the anti-aging effect of RA and RAP were determined based on behavior tests and histomorphological observation. Network pharmacology was performed to construct the “compound-target-pathway” network. Gene and protein expression of possible targets were validated and analyzed using qRT-PCR and Western blotting.ResultsTreatment by RA and RAP could alleviate the symptoms of aging such as a decrease in body weight and organ indices, behavioral impairment, increased oxidative stress, weaken histopathological evaluation. The effect of RAP was more pronounced than that of RA in preventing aging process in a mouse model. The anti-aging effect of RA and RAP is associated with the balance of oxidative stress and activation of PI3K/Akt signaling pathway.ConclusionUsing an integrated strategy of network pharmacology and molecular biology we attempted to elucidate the mechanisms of action of RA and RAP.  相似文献   

6.
The cholinergic hypothesis has long been a “polar star” in drug discovery for Alzheimer’s disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC50)?=?37.02?nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC50?=?101.40?nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25?μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.  相似文献   

7.
BackgroundRhizoma Anemarrhenae (RA) has been conventionally used for treatment of Alzheimer's disease (AD) in Traditional Chinese Medicine, and thus, the active components from RA can be screened.PurposeThis research aimed to identify the active components of RA and their targets and further clarify the molecular mechanisms underlying its anti-AD activity.MethodsFirst, the potential active compounds from RA were screened by neurocyte extraction and micro-dialysis methods. Second, the potential targets were predicted by a chemogenomics target knowledgebase and further explored by surface plasmon resonance and enzyme activity assays. Third, the pharmacological effects were evaluated by employing APP/PS1 transgenic mice and SH-SY5Y-APP cells. ELISAs and Western blot analyses were used to evaluate the expression of key molecules in the amyloidogenic and NMDAR/ERK pathways.ResultsTimosaponin A-III (TA-III) was screened and identified as a potential active component for the anti-AD activity, and BACE1 was proven to be a potential high-affinity target. Enzyme kinetic analysis showed that TA-III had strong noncompetitive inhibitory activity against BACE1. The in vitro and in vivo assays indicated that TA-III had pharmacological effects through improving memory impairment, reducing Aβ aggregation via the amyloidogenic pathway and preventing neuronal impairment through downregulating the NMDAR/ERK signaling pathway.ConclusionTA-III targets BACE1 to reduce Aβ aggregation through down-regulating the NMDAR/ERK pathway for treating AD.  相似文献   

8.
BackgroundAlzheimer's disease (AD) is a major form of dementia. Many evidence-based clinical trials have been performed, but no effective treatment has yet been developed. This suggests that our understanding of AD patho-mechanisms is still insufficient. In particular, the pathological roles of posttranslational modifications including glycosylation have remained poorly understood, but recent advances in glycobiology technology have gradually revealed that sugar modifications of AD-related molecules are profoundly involved in the onset and progression of this disease.Scope of reviewWe summarize the roles of N-glycans in AD pathogenesis and progression, particularly focusing on key AD-related molecules, including amyloid precursor protein (APP), α-, β-, and γ-secretases, and tau.Major conclusionsBiochemical, genetic and pharmacological studies have gradually revealed how N-glycans regulate AD development and progression through functional modulation of the key glycoproteins. These findings suggest that further glycobiology approaches in AD research will reveal novel glycan-based drug targets and early biomarkers of AD. However, N-glycan structures of these molecules in physiological and disease conditions and their precise functions are still largely unclear. Deeper glycobiology studies will be needed to reveal how AD pathology is regulated by glycosylation.General significanceIt is now known that N-glycans play significant roles in AD development. However, specific pathological functions of particular glycan epitopes on each AD-related glycoprotein are still poorly understood. Future glycobiology studies with more sensitive glycoproteomic techniques and a wider variety of chemical glycosylation inhibitors could contribute to the development of novel glycan-based AD therapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.  相似文献   

9.
BackgroundAccording to traditional Chinese medicine (TCM) theory, the herbal property is the most important guiding principle of ancient medication in China. The classification of warm- and cold-stimulating TCM is defined mainly based on the effects of herbs in regulating body temperature; however, the underlying mechanism of such distinction has not been fully identified.MethodsHere, four commonly used spleen-meridian herbs, Ginseng Radix and Astragali Radix as typical warm-stimulating herbs, and Nelumbinis Semen and Coicis Semen as typical cold-stimulating herbs, were selected to test their effects in regulating body temperature, as well as its triggered thermo-regulatory factors and energy related metabolites, in yeast-induced fever rats.ResultsThe intake of Astragali Radix increased body temperature in yeast-induced fever rats; while Coicis Semen showed cooling effects in such rats. In parallel, the levels of cAMP, PGE2 and thermo-related metabolites, including choline, creatine, alanine, lactate and leucine, in the blood of yeast-induced rats were increased significantly by the intake of Astragali Radix. Oppositely, the cold-stimulating herbs, Nelumbinis Semen and Coicis Semen, showed cooling effects by increasing certain metabolites, e.g. histidine, tyrosine, lipid, myo-inositol, as well as AVP level.ConclusionHere, we compared different effects of warm and cooling spleen-meridian herbs in the regulation of body temperature. By providing an intuitive comparison of thermo-regulatory factors and related metabolites after intake of selected herbs, the mechanism behind the warm and cooling effects of specific herbs were revealed.  相似文献   

10.
BackgroundAtopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease, which is caused by several genetic, immunological, and environmental factors. In addition to skin manifestations, AD is associated with an increased risk of depression and suicidal ideation. Furthermore, this association is underappreciated and therefore insufficiently studied.Hypothesis/PurposeWe investigated the association between AD and depression and the effect of I. inflexus (Thunb.) Kudo extract (IIE) treatment in a Dermatophagoides farinae extract (DfE)-induced mouse model of AD.Study DesignWe evaluated the effects of IIE on depressive behavior in AD mice using four experimental groups: normal (untreated), AD mice (untreated Dfe-induced), IIE-treated (Dfe-induced AD mice), and positive control (tacrolimus-treated Dfe-induced AD mice).MethodsAn AD model was established by the application of 4% sodium dodecyl sulfate to the shaved dorsal neck skin and ears of NC/Nga mice 1 h before application of 100 mg DfE twice per week for 3 weeks. After the first week of DfE application, mice were treated with IIE every day for the remaining 2 weeks. We performed behavioral testing, histology, ELISA, and western blotting to assess depressive-like behavior and neuroinflammatory responses and to measure IgE, histamine, corticosterone, and serotonin levels.ResultsCompared with normal mice, AD mice showed more scratching behavior, increased ear swelling, and higher serum levels of IgE and histamine. AD mice also exhibited evidence of depressive-like behavior in the open-field and sucrose preference tests as well as altered serum corticosterone and brain serotonin concentrations. Histopathological analyses revealed increased infiltration of inflammatory cells and mast cells into the skin and ear tissue and elevated microglia activation and neuroinflammatory response in the brains of AD mice. Topical application of IIE reversed the effects of AD on scratching behavior, ear swelling, open-field locomotion, sucrose preference, and levels of IgE, histamine, corticosterone, serotonin, and inflammatory markers. Moreover, IIE treatment reduced inflammatory cytokine responses in keratinocyte cells.ConclusionIIE is a candidate anti-AD therapy due to its ability to exert neuroprotective and antidepressant effects.  相似文献   

11.
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.  相似文献   

12.
Finding neuroprotective drugs with fewer side effects and more efficacy has become a major problem as the global prevalence of Alzheimer's disease (AD) rises. Natural drugs have risen to prominence as potential medication candidates. Ginseng has a long history of use in China, and it has a wide range of pharmacological actions that can help with neurological issues. Iron loaded in the brain has been linked to AD pathogenesis. We reviewed the regulation of iron metabolism and its studies in AD and explored how ginseng might regulate iron metabolism and prevent or treat AD. Researchers utilized network pharmacology analysis to identify key factive components of ginseng that protect against AD by regulating ferroptosis. Ginseng and its active ingredients may benefit AD by regulating iron metabolism and targeting ferroptosis genes to inhibit the ferroptosis process. The results present new ideas for ginseng pharmacological studies and initiatives for further research into AD-related drugs. To provide comprehensive information on the neuroprotective use of ginseng to modulate iron metabolism, reveal its potential to treat AD, and provide insights for future research opportunities.  相似文献   

13.
BackgroundThousands of years of clinical application of Wutou decoction (WTD) support its reliable efficacy and safety in treating rheumatoid arthritis (RA). However, the underlying molecular mechanism remains unclear, and the synergistic involvement of assistant herbs in WTD in enhancing the sovereign herb in treating RA is unknown.PurposeThis study aimed to investigate the efficacy-oriented compatibility of five herbs in WTD and the underlying mechanisms.MethodsThe anti-arthritic effects of WTD and the compatibilities of the five herbs in WTD were studied in vivo with adjuvant-induced arthritis (AIA) rat model and in vitro with LPS-induced RAW264.7 macrophage. Network pharmacology analysis was conducted to identify the dominant pathways involved in the anti-arthritis mechanisms of WTD and how the five herbs work synergistically. The results were further verified by in vivo and in vitro experiments.ResultsOur data revealed that the five herbs in WTD exert synergistic anti-arthritic effects on RA. Moreover, Radix Aconite (AC) is the principal anti-inflammatory component in WTD according to the extent of therapeutic effects exerted on the AIA rats. In vivo and in vitro experiments demonstrated that WTD inhibited NF-κB phosphorylation and simultaneously increased the expression of Nrf2, which were the major pathways identified by the network pharmacology analysis. The major assistant component, Herba Ephedrae (EP), evidently inhibited NF-κB mediated inflammatory response. The other assistant component, Radix Astragali (AS), considerably enhanced the expression of Nrf2 when used alone or in combination with AC. These combinations improved the anti-arthritis effects on the AIA rats better than that of AC alone. Nevertheless, WTD always achieved the best effects than any combinations both in vivo and in vitro.ConclusionThe ministerial herbs EP and AS intensify the anti-arthritic effects of AC by regulating the NF-κB-mediated inflammatory pathway and the Nrf2-mediated anti-oxidation pathway which are the major pathways of WTD for alleviating the symptoms of RA.  相似文献   

14.
Abstract

Cholinesterase inhibitor plays an important role in the treatment of patients with Alzheimer’s disease (AD). Herein, we report the medicinal chemistry efforts leading to a new series of 1,3-dimethylbenzimidazolinone derivatives. Among the synthesised compounds, 15b and 15j showed submicromolar IC50 values (15b, eeAChE IC50?=?0.39?±?0.11?µM; 15j, eqBChE IC50?=?0.16?±?0.04?µM) towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Kinetic and molecular modelling studies revealed that 15b and 15j act in a competitive manner. 15b and 15j showed neuroprotective effect against H2O2-induced oxidative damage on PC12 cells. This effect was further supported by their antioxidant activity determined in a DPPH assay in vitro. Morris water maze test confirmed the memory amelioration effect of the two compounds in a scopolamine-induced mouse model. Moreover, the hepatotoxicity of 15b and 15j was lower than tacrine. In summary, these data suggest 15b and 15j are promising multifunctional agents against AD.  相似文献   

15.
Phosphodiesterase-9 (PDE9) is a promising target for treatment of Alzheimer’s disease (AD). To discover multifunctional anti-AD agents with capability of PDE9 inhibition and antioxidant activity, a series of novel pyrazolopyrimidinone derivatives, coupling with the pharmacophore of antioxidants such as ferulic and lipolic acids have been designed with the assistance of molecular docking and dynamics simulations. Twelve out of 14 synthesised compounds inhibited PDE9A with IC50 below 200?nM, and showed good antioxidant capacities in the ORAC assay. Compound 1h, the most promising multifunctional anti-AD agent, had IC50 of 56?nM against PDE9A and good antioxidant ability (ORAC (trolox)?=?3.3). The selectivity of 1h over other PDEs was acceptable. In addition, 1h showed no cytotoxicity to human neuroblastoma SH-SY5Y cells. The analysis on structure-activity relationship (SAR) and binding modes of the compounds may provide insight into further modification.  相似文献   

16.
Introduction – Radix Astragali, one of most widely used and important traditional Chinese medicines, is cultivated in different geographical regions. Because of varying growing conditions, the qualities of Radix Astragali vary, which can give rise to differences in clinical therapy. Detecting adulteration is a routine requirement in pharmaceutical practice. Objective – To develop a simple and accurate approach to discriminate the geographical origin and potential adulteration of Radix Astragali, derived from the root of Astragalus membranaceus (Fischer) Bunge var. mongholicus (Bunge) Hsiao, using Fourier transform infrared (FT‐IR) spectroscopy and chemometric methods. Methodology – To obtain characteristic IR spectra for accurate discrimination, a one‐solvent extraction method was utilised following a novel evaluation method for selecting appropriate solvents. Samples of Radix Astragali from different geographical origins were discriminated using FT‐IR spectroscopy and discriminant partial least squares (DPLS) methods. FT‐IR spectroscopy combined with Mahalanobis distance was employed to detect adulteration of Radix Astragali. Results – In comparison with other solvents, butanone was more effective at extracting samples. Radix Astragali samples were accurately assigned to their corresponding geographical origins by using FT‐IR spectroscopy and DPLS method. Most adulterated samples were detected accurately by application of FT‐IR spectroscopy combined with Mahalanobis distance. Conclusion – FT‐IR spectroscopy combined with chemometric method was developed and demonstrated to be a useful tool to discriminate geographical origin and adulteration of Radix Astragali. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
BackgroundAstragali Radix (AR), a common Traditional Chinese Medicine (TCM), is commonly used for treating nephrotic syndrome (NS) in China. At present, the research on the efficacy of AR against NS is relative clearly, but there are fewer researches on the mechanism.PurposeThe aim of this study was to evaluate the potential beneficial effects of AR in an adriamycin-induced nephropathy rat model, as well as investigate the possible mechanisms of action and potential lipid biomarkers.MethodsIn this work, a rat model of NS was established by two injections of ADR (3.5 + 1 mg/kg) into the tail vein. The potential metabolites and targets involved in the anti-NS effects of AR were predicted by lipidomics coupled with the network pharmacology approach, and the crucial metabolite and protein were further validated by western blotting and ELISA.ResultsThe results showed that 22 metabolites such as l-carnitine, LysoPC (20:3), and SM (d18:1/16:0) were associated with renal injury. Moreover, SMPD1, CPT1A and LCAT were predicted as lipids linked targets of AR against NS, whilst glycerophospholipid, sphingolipid and fatty acids metabolism were involved as key pathways of AR against NS. Besides, AR could play a critical role in NS by improving oxidative stress, inhibiting apoptosis and reducing inflammation. Interestingly, our results indicated that key metabolite l-carnitine and target CPT1 were one of the important metabolites and targets for AR to exert anti-NS effects.ConclusionIn summary, this study offered a new understanding of the protection mechanism of AR against NS by network pharmacology and lipidomic method.  相似文献   

18.
Degeneration of basal forebrain cholinergic neurons contributes significantly to the cognitive deficits associated with Alzheimer''s disease (AD) and has been attributed to aberrant signaling through the neurotrophin receptor p75 (p75NTR). Thus, modulating p75NTR signaling is considered a promising therapeutic strategy for AD. Accordingly, our laboratory has developed small molecule p75NTR ligands that increase survival signaling and inhibit amyloid-β-induced degenerative signaling in in vitro studies. Previous work found that a lead p75NTR ligand, LM11A-31, prevents degeneration of cholinergic neurites when given to an AD mouse model in the early stages of disease pathology. To extend its potential clinical applications, we sought to determine whether LM11A-31 could reverse cholinergic neurite atrophy when treatment begins in AD mouse models having mid- to late stages of pathology. Reversing pathology may have particular clinical relevance as most AD studies involve patients that are at an advanced pathological stage. In this study, LM11A-31 (50 or 75 mg/kg) was administered orally to two AD mouse models, Thy-1 hAPPLond/Swe (APPL/S) and Tg2576, at age ranges during which marked AD-like pathology manifests. In mid-stage male APPL/S mice, LM11A-31 administered for 3 months starting at 6–8 months of age prevented and/or reversed atrophy of basal forebrain cholinergic neurites and cortical dystrophic neurites. Importantly, a 1 month LM11A-31 treatment given to male APPL/S mice (12–13 months old) with late-stage pathology reversed the degeneration of cholinergic neurites in basal forebrain, ameliorated cortical dystrophic neurites, and normalized increased basal forebrain levels of p75NTR. Similar results were seen in female Tg2576 mice. These findings suggest that LM11A-31 can reduce and/or reverse fundamental AD pathologies in late-stage AD mice. Thus, targeting p75NTR is a promising approach to reducing AD-related degenerative processes that have progressed beyond early stages.  相似文献   

19.
The effect of α-asarone on impairment of cognitive performance caused by amnesic drug scopolamine was investigated. Treatment with α-asarone attenuated scopolamine-induced cognitive deficits as evaluated by passive avoidance and Y-maze test. Administration of α-asarone for 15 d improved memory and cognitive function as indicated by an increase in transfer latency time and spontaneous alternation in passive avoidance and the Y-maze test respectively. To understand the action of α-asarone, the levels of acetylcholinesterase (AChE), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampus (Hippo) and cerebral cortex (CC) of scopolamine-induced amnesic mice were evaluated. The mice treated with Scopolamine showed increased activity of AChE, MDA and SOD levels in both the Hippo and the CC area. Treatment with α-asarone attenuated the increased activity of AChE and normalized the MDA and SOD levels in the Hippo and the CC area in the scopolamine treated amnesic mice. These results suggest that α-asarone has a beneficial effect in cognitive impairment induced by dysfunction of cholinergic system in brain through inhibition of AChE activity and by influencing the antioxidant defense mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号