首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
Chen D  Pan KZ  Palter JE  Kapahi P 《Aging cell》2007,6(4):525-533
The antagonistic pleiotropy theory of aging proposes that aging takes place because natural selection favors genes that confer benefit early on life at the cost of deterioration later in life. This theory predicts that genes that impact development would play a key role in shaping adult lifespan. To better understand the link between development and adult lifespan, we examined the genes previously known to be essential for development. From a pool of 57 genes that cause developmental arrest after inhibition using RNA interference, we have identified 24 genes that extend lifespan in Caenorhabditis elegans when inactivated during adulthood. Many of these genes are involved in regulation of mRNA translation and mitochondrial functions. Genetic epistasis experiments indicate that the mechanisms of lifespan extension by inactivating the identified genes may be different from those of the insulin/insulin-like growth factor 1 (IGF-1) and dietary restriction pathways. Inhibition of many of these genes also results in increased stress resistance and decreased fecundity, suggesting that they may mediate the trade-offs between somatic maintenance and reproduction. We have isolated novel lifespan-extension genes, which may help understand the intrinsic link between organism development and adult lifespan.  相似文献   

5.
6.
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. A mev-1 (kn1) mutant of Caenorhabditis elegans, isolated on the basis of its methyl viologen (paraquat) hypersensitivity, is also hypersensitive to elevated oxygen levels. Unlike the wild type, its life span decreases dramatically as oxygen concentrations are increased from 1% to 60%. Strains, which bear this mutation, accumulate fluorescent materials and protein carbonyl groups, markers of aging, at faster rates than the wild type. We have cloned mev-1 gene by transformation rescue and found that it is, in fact, the previously sequenced gene (cyt-1) that encodes succinate dehydrogenase cytochrome b. A missense mutation abolishes complex II activity in the mitochondrial membrane but not succinate dehydrogenase enzyme activity per se. These data suggest that CYT-1 directly participates in electron transport from FADH2 to coenzyme Q. Moreover, mutational inactivation of this process renders animals susceptible to oxidative stress and, as a result, leads to premature aging.  相似文献   

7.
Oxidative stress and aging in Caenorhabditis elegans   总被引:2,自引:0,他引:2  
Much attention has been focused on the hypothesis that oxidative damage plays in cellular and organismal aging. A mev-1 (kn1) mutant of Caenorhabditis elegans, isolated on the basis of its methyl viologen (paraquat) hypersensitivity, is also hypersensitive to elevated oxygen levels. Unlike the wild type, its life span decreases dramatically as oxygen concentrations are increased from 1% to 60%. Strains, which bear this mutation, accumulate fluorescent materials and protein carbonyl groups, markers of aging, at faster rates than the wild type. We have cloned mev-1 gene by transformation rescue and found that it is, in fact, the previously sequenced gene (cyt-1) that encodes succinate dehydrogenase cytochrome b. A missense mutation abolishes complex II activity in the mitochondrial membrane but not succinate dehydrogenase enzyme activity per se. These data suggest that CYT-1 directly participates in electron transport from FADH2 to coenzyme Q. Moreover, mutational inactivation of this process renders animals susceptible to oxidative stress and, as a result, leads to premature aging.  相似文献   

8.
9.
Wild-type and mutant actin genes in Caenorhabditis elegans   总被引:6,自引:0,他引:6  
We have sequenced the four actin genes of Caenorhabditis elegans. These four genes encode typical invertebrate actins and are highly homologous, differing from each other by, at most, three amino acid residues. As a first step toward an understanding of the developmental regulation of this gene set we have also sequenced mutant actin genes. The mutant genes were cloned from two independent revertants of a single dominant actin mutant. For both revertants, reversion was accompanied by an actin gene rearrangement. The accumulation of actin mRNA during development in these two revertants is different from that of wild-type animals. We present here a correlation between actin gene structure and expression in wild-type and mutant animals. The results, suggest that co-ordinate regulation of actin genes is not essential for wild-type muscle function. In addition, it appears that changes in the 3' region of at least one of the actin mRNA may affect its steady-state regulation during development.  相似文献   

10.
《Free radical research》2013,47(3):371-379
Abstract

Curcumin (diferuloylmethane), a pharmacologically active substance derived from turmeric, exhibits anti-inflammatory, anticarcinogenic, and antioxidant properties. We examined the modulation of oxidative-stress resistance and associated regulatory mechanisms by curcumin in a Caenorhabditis elegans model. Our results showed that curcumin-treated wild-type C. elegans exhibited increased survival during juglone-induced oxidative stress compared with the control treatment. In addition, curcumin reduced the levels of intracellular reactive oxygen species in C. elegans. Moreover, curcumin induced the expression of the gst-4 and hsp-16.2 stress response genes. Lastly, our findings from the mechanistic study in this investigation suggest that the antioxidative effect of curcumin is mediated via regulation of age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1. Our study elucidates the diverse modes of action and signaling pathways that underlie the antioxidant activity exhibited by curcumin in vivo.  相似文献   

11.
A M Rushforth  C C White  P Anderson 《Genetics》1998,150(3):1067-1077
Caenorhabditis elegans contains two muscle regulatory myosin light chain genes, mlc-1 and mlc-2. To determine their in vivo roles, we identified deletions that eliminate each gene individually and both genes in combination. Functions of mlc-1 are redundant to those of mlc-2 in both body-wall and pharyngeal muscle. mlc-1(0) mutants are wild type, but mlc-1(0) mlc-2(0) double mutants arrest as incompletely elongated L1 larvae, having both pharyngeal and body-wall muscle defects. Transgenic copies of either mlc-1(+) or mlc-2(+) rescue all defects of mlc-1(0) mlc-2(0) double mutants. mlc-2 is redundant to mlc-1 in body-wall muscle, but mlc-2 performs a nearly essential role in the pharynx. Approximately 90% of mlc-2(0) hermaphrodites arrest as L1 larvae due to pharyngeal muscle defects. Lethality of mlc-2(0) mutants is sex specific, with mlc-2(0) males being essentially wild type. Four observations suggest that hermaphrodite-specific lethality of mlc-2(0) mutants results from insufficient expression of the X-linked mlc-1(+) gene in the pharynx. First, mlc-1(0) mlc-2(0) double mutants are fully penetrant L1 lethals in both hermaphrodites and males. Second, in situ localization of mlc mRNAs demonstrates that both mlc-1 and mlc-2 are expressed in the pharynx. Third, transgenic copies of either mlc-1(+) or mlc-2(+) rescue the pharyngeal defects of mlc-1(0) mlc-2(0) hermaphrodites. Fourth, a mutation of the dosage compensation gene sdc-3 suppresses hermaphrodite-specific lethality of mlc-2(0) mutants.  相似文献   

12.
13.
For a nonessential diminutive organ comprised of only 22 nuclei, the Caenorhabditis elegans vulva has done very well for itself. The status of the vulva as an overachiever is in part due to its inherent structural simplicity as well as to the intricate regulation of its induction and development. Studies over the past twenty years have shown the vulva to be a microcosm for organogenesis and a model for the integration of complex signaling pathways. Furthermore, many of these signaling molecules are themselves associated with cancer in mammals. This review focuses on what is perhaps the most intriguing and complex story to emerge from these studies thus far, the role of the Synthetic Multivulval (SynMuv) genes in controlling vulval cell-fate adoption. Recent advances have led to a greater mechanistic understanding of how these genes function during vulval development and have also identified roles for these genes in diverse developmental processes.  相似文献   

14.
In the nematode Caenorhabditis elegans, the vulva is a simple tubular structure linking the gonads with the external cuticle. In this review we summarize knowledge of inter- and intracellular signaling during vulval development and of the genes required for vulval invagination. Mutants of one set of these genes, the sqv genes, have a normal number of vulval precursor cells (VPCs) with an unperturbed cell lineage but the invagination space, normally a tube, is either collapsed or absent. We review evidence that the sqv genes are involved in glycosaminoglycan synthesis and speculate on ways in which defective glycosaminoglycan formation might lead to collapse of the vulval structure.  相似文献   

15.
16.
Oxygen is essential for animals, but high concentrations of oxygen are toxic to them probably because of an increase in reactive oxygen species (ROS). Many genes are involved in the regulation of ROS, but they largely remain to be identified. To identify these genes, we employed the nematode Caenorhabditis elegans as a model organism, and systematically screened for genes that, when down-regulated by RNAi, lead to an increased sensitivity to ROS. We examined approximately 2400 genes on linkage group I and found that knock-down of 9 genes which participate in various cellular functions led to an increased sensitivity to ROS. This finding suggests an implication of a variety of cellular processes in the regulation of oxidative stress.  相似文献   

17.
Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.  相似文献   

18.
Trehalose metabolism genes in Caenorhabditis elegans and filarial nematodes   总被引:1,自引:0,他引:1  
The sugar trehalose is claimed to be important in the physiology of nematodes where it may function in sugar transport, energy storage and protection against environmental stresses. In this study we investigated the role of trehalose metabolism in nematodes, using Caenorhabditis elegans as a model, and also identified complementary DNA clones putatively encoding genes involved in trehalose pathways in filarial nematodes. In C. elegans two putative trehalose-6-phosphate synthase (tps) genes encode the enzymes that catalyse trehalose synthesis and five putative trehalase (tre) genes encode enzymes catalysing hydrolysis of the sugar. We showed by RT-PCR or Northern analysis that each of these genes is expressed as mRNA at all stages of the C. elegans life cycle. Database searches and sequencing of expressed sequence tag clones revealed that at least one tps gene and two tre genes are expressed in the filarial nematode Brugia malayi, while one tps gene and at least one tre gene were identified for Onchocerca volvulus. We used the feeding method of RNA interference in C. elegans to knock down temporarily the expression of each of the tps and tre genes. Semiquantitative RT-PCR analysis confirmed that expression of each gene was silenced by RNA interference. We did not observe an obvious phenotype for any of the genes silenced individually but gas-chromatographic analysis showed >90% decline in trehalose levels when both tps genes were targeted simultaneously. This decline in trehalose content did not affect viability or development of the nematodes.  相似文献   

19.
Whole genome sequencing of several metazoan model organisms provides a platform for studying genome evolution. How representative are the genomes of these model organisms for their respective phyla? Within nematodes, for example, the free-living soil nematode Caenorhabditis elegans is a highly derived species with unusual genomic characters, such as a reduced Hox cluster (Curr. Biol., 13, 37–40) and the absence of a Hedgehog signaling system. Here, we describe the recent loss of a DNA methyltransferase-2 gene (dnmt-2) in C.elegans. A dnmt-2-like gene is present in the satellite model organism Pristionchus pacificus, another free-living nematode that diverged from C.elegans 200–300 million years ago. In contrast, C.elegans, Caenorhabditis briggsae and P.pacificus all contain an mbd-2-like gene, which encodes another essential component of the methylation system of higher animals and fungi. Cel-mbd-2 is expressed throughout development and RNA interference (RNAi) experiments result in variable phenotypes. In contrast, Cbr-mbd-2 RNAi results in paralyzed larval or adult worms suggesting recent changes of gene function within the genus Caenorhabditis. We speculate that both genes were part of an ancestral DNA methylation system in nematodes and that gene loss and sequence divergence have abolished DNA methylation in C.elegans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号