首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Like several other bird schistosomes, neurotropic schistosome of Trichobilharzia regenti can invade also mammals, including humans. Repeated infections cause cercarial dermatitis, a skin inflammatory reaction leading to parasite elimination in non-specific mammalian hosts. However, in experimentally primo-infected mice, the worms escape from the skin and migrate to the central nervous system. In order to evade host immune reactions, schistosomes undergo cercaria/schistosomulum transformation accompanied with changes of surface antigens. The present study is focused on localization of the main antigens of T. regenti; cercariae, schistosomula developed under different conditions and adults were compared. Antigens were localized by immunofluorescence and ultrastructural immunocytochemistry using sera of mice repeatedly infected with T. regenti. Detected antibody targets were located in glycocalyx and penetration glands of cercariae and in tegument of cercariae, schistosomula and adults. Shedding of cercarial glycocalyx significantly reduced surface reactivity; further decrease was reported during ongoing development of schistosomula. Spherical bodies, probably transported from subtegumental cell bodies to worm surface, were identified as the most reactive tegumental structures. Based on similar results for schistosomula developed in specific, non-specific hosts and in vitro, it seems that the ability of T. regenti to decrease the surface immunoreactivity during ontogenesis is independent on the host type.  相似文献   

2.
3.
4.
Besides their natural bird hosts, Trichobilharzia regenti cercariae are able to penetrate skin of mammals, including humans. Experimental infections of mice showed that schistosomula of this species are able to avoid the immune response in skin of their non-specific mammalian host and escape the skin to migrate to the CNS. Schistosomula do not mature in mammals, but can survive in nervous tissue for several days post infection. Neuroinfections of specific bird hosts as well as accidental mammalian hosts can lead to neuromotor effects, for example, leg paralysis and thus this parasite serves as a model of parasite invasion of the CNS.Here, we show by histological and immunohistochemical investigation of CNS invasion of immunocompetent (BALB/c) and immunodeficient (SCID) mice by T. regenti schistosomula that the presence of parasites in the nervous tissue initiated an influx of immune cells, activation of microglia, astrocytes and development of inflammatory lesions. Schistosomula elimination in the tissue depended on the host immune status. In the absence of CD3+ T-cells in immunodeficient SCID mice, parasite destruction was slower than that in immunocompetent BALB/c mice. Axon injury and subsequent secondary demyelination in the CNS were associated with mechanical damage due to migration of schistosomula through the nervous tissue, and not by host immune processes. Immunoreactivity of the parasite intestinal content for specific antigens of oligodendrocytes/myelin and neurofilaments showed for the first time that schistosomula ingest the nervous tissue components during their migration.  相似文献   

5.
This study was conducted to investigate the life history, morphology, and maturation of larval stages and adult worms of Fasciola gigantica in experimental mice. Lymnaea auricularia rubiginosa was used as the intermediate host, and Oryza sativa was used for encystment of the metacercariae, while Mus musculus was used as the definitive host for maturation study. Fresh eggs from the gall bladder of water buffaloes fully developed into embryonated ones and hatched out at days 11-12 after incubation at about 29ºC. Free-swimming miracidia rapidly penetrated into the snail host, and gradually developed into the next larval stages; sporocyst, redia, and daughter redia with cercariae. Fully-developed cercariae were separated from the redia and shed from the snails on day 39 post-infection (PI). Free-swimming cercariae were immediately allowed to adhere to rice plants, and capsules were constructed to protect metacercariae on rice plants. Juvenile worms were detected in intestines of mice at days 3 and 6 PI, but they were found in the bile duct from day 9 PI. Juvenile and adult flukes were recovered from 16 mice experimentally infected with metacercariae, with the average recovery rate of 35.8%. Sexually mature adult flukes were recovered from day 42 PI. It could be confirmed that experimentally encysted metacercariae could infect and develop to maturity in the experimental host. The present study reports for the first time the complete life history of F. gigantica by an experimental study in Thailand. The obtained information can be used as a guide for prevention, elimination, and treatment of F. gigantica at environment and in other hosts.  相似文献   

6.
Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae.  相似文献   

7.
8.
9.
Digenean trematodes are common and abundant in aquatic habitats and their free-living larvae, the cercariae, have recently been recognized as important components of ecosystems in terms of comprising a significant proportion of biomass and in having a potentially strong influence on food web dynamics. One strategy to enhance their transmission success is to produce high numbers of cercariae which are available during the activity peak of the next host. In laboratory experiments with 13 Lymnaea stagnalis snails infected with Trichobilharzia szidati the average daily emergence rate per snail was determined as 2,621 cercariae, with a maximum of 29,560. During a snail’s lifetime this summed up to a mass equivalent of or even exceeding the snail’s own body mass. Extrapolated for the eutrophic pond where the snails were collected, annual T. szidati biomass may reach 4.65 tons, a value equivalent to a large Asian elephant. Emission peaks were observed after the onset of illumination, indicating emission synchronizing with the high morning activities of the definitive hosts, ducks. However, high cercarial emission is possible throughout the day under favorable lightning conditions. Therefore, although bird schistosomes, such as T. szidati constitute only a fraction of the diverse trematode communities in the studied aquatic ecosystem, their cercariae can still pose a considerable risk for humans of getting cercarial dermatitis (swimmer''s itch) due to the high number of cercariae emitted from infected snails.  相似文献   

10.
11.
The blood flukes of turtles (Digenea: Spirorchiidae) and the blood flukes of crocodilians, birds and mammals (Digenea: Schistosomatidae) have long been considered as closely related, but distinct evolutionary lineages. Recent morphological and molecular studies have considered these families as sister taxa within the Schistosomatoidea. Representatives of both families have similar furcocercous cercariae and similar two-host life cycles, but have different definitive hosts, distinct reproductive patterns and different morphologies. Sequences including approximately 1800 bases of the small subunit ribosomal DNA and 1200 bases of the large subunit ribosomal DNA were generated from representatives of eight spirorchiid genera. These sequences were aligned with pre-existing sequences of Schistosomatidae and other representatives of the Diplostomida and analysed for phylogenetic signal using maximum parsimony and Bayesian inference. These analyses revealed that the Spirorchiidae is paraphyletic and that the turtle blood flukes are basal to the highly derived schistosomatids. Three genera of spirorchiids from marine turtles form a sister group to the Schistosomatidae and five genera of spirorchiids from freshwater turtles occupy basal positions in the phylogeny of tetrapod blood flukes. Marine turtles are considered to be derived from freshwater turtles and the results of the current study indicate that the spirorchiid parasites of marine turtles are similarly derived from a freshwater ancestor. The close relationship of the marine spirorchiids to schistosomatids and the basal position of the marine transmitted Austrobilharzia and Ornithobilharzia in the schistosomatid clade suggests that schistosomatids arose after a marine turtle blood fluke ancestor successfully colonised birds.  相似文献   

12.

Background

Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts.

Methods

Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays.

Conclusions

This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts.  相似文献   

13.
Shah J. and Ramasamy R. 1982. Surface antigens on cercariae, schistosomula and adult worms of Schistosoma mansoni. International Journal for Parasitology12: 451–461. The surface protein antigens of Schistosoma mansoni were radiolabelled by lactoperoxidase catalysed I125-iodination and analysed by immune-precipitation and polyacrylamide gel electrophoresis. The results showed that regularly labelled surface antigens of mol. wts >150,000, 78,000, 45,000 and 22,000 were present on adult worms. Common surface antigens were observed on the cercariae, schistosomula and adult worms. It is suggested that surface antigens released from living adult worms can sensitise a host to react against the invading schistosomula of a secondary infection. However, the failure to vaccinate mice using material containing adult worm surface antigens suggests that the induction of protective immunity is a complex phenomenon.  相似文献   

14.
Life cycles of spirorchiids that infect the vascular system of turtles are poorly understood. Few life cycles of these blood flukes have been elucidated and all intermediate hosts reported are gastropods (Mollusca), regardless of whether the definitive host is a freshwater or a marine turtle. During a recent survey of blood fluke larvae in polychaetes on the coast of South Carolina, USA, spirorchiid-like cercariae were found to infect the polychaetes Amphitrite ornata (Terebellidae) and Enoplobranchus sanguineus (Polycirridae). Cercariae were large, furcate, with a ventral acetabulum, but no eyespots were observed. Partial sequences of D1–D2 domains of the large ribosomal subunit, the internal transcribed spacer 2, and the mitochondrial cytochrome oxidase 1 genes allowed the identification of sporocysts and cercariae as belonging to two unidentified Neospirorchis species reported from the green turtle, Chelonia mydas, in Florida: Neospirorchis sp. (Neogen 13) in A. ornata and Neospirorchis sp. (Neogen 14) in E. sanguineus. Phylogenetic analysis suggests that infection of annelids by blood flukes evolved separately in aporocotylids and spirorchiids. Our results support the contention that the Spirorchiidae is not a valid family and suggest that Neospirorchis is a monophyletic clade within the paraphyletic Spirorchiidae. Since specificity of spirorchiids for their intermediate hosts is broader than it was thus far assumed, surveys of annelids in turtle habitats are necessary to further our understanding of the life history of these pathogenic parasites.  相似文献   

15.
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). In the mammalian host, the parasite lives entirely extracellularly, in both the blood and interstitial spaces in tissues. Although most T. brucei research has focused on the biology of blood- and central nervous system (CNS)-resident parasites, a number of recent studies have highlighted parasite reservoirs in the dermis and adipose tissue, leading to a renewed interest in tissue-resident parasite populations. In light of this renewed interest, work describing tissue-resident parasites can serve as a valuable resource to inform future investigations of tissue-resident T. brucei. Here, we review this body of literature, which describes infections in humans, natural hosts, and experimental animal models, providing a wealth of information on the distribution and biology of extravascular parasites, the corresponding immune response in each tissue, and resulting host pathology. We discuss the implications of these studies and future questions in the study of extravascular T. brucei.  相似文献   

16.

Background

Eastern equine encephalitis (EEE) virus (Togaviridae, Alphavirus) is a highly pathogenic mosquito-borne zoonosis that is responsible for occasional outbreaks of severe disease in humans and equines, resulting in high mortality and neurological impairment in most survivors. In the past, human disease outbreaks in the northeastern U.S. have occurred intermittently with no apparent pattern; however, during the last decade we have witnessed recurring annual emergence where EEE virus activity had been historically rare, and expansion into northern New England where the virus had been previously unknown. In the northeastern U.S., EEE virus is maintained in an enzootic cycle involving the ornithophagic mosquito, Culiseta melanura, and wild passerine (perching) birds in freshwater hardwood swamps. However, the identity of key avian species that serve as principal virus reservoir and amplification hosts has not been established. The efficiency with which pathogen transmission occurs within an avian community is largely determined by the relative reservoir competence of each species and by ecological factors that influence contact rates between these avian hosts and mosquito vectors.

Methodology and principle findings

Contacts between vector mosquitoes and potential avian hosts may be directly quantified by analyzing the blood meal contents of field-collected specimens. We used PCR-based molecular methods and direct sequencing of the mitochondrial cytochrome b gene for profiling of blood meals in Cs. melanura, in an effort to quantify its feeding behavior on specific vertebrate hosts, and to infer epidemiologic implications in four historic EEE virus foci in the northeastern U.S. Avian point count surveys were conducted to determine spatiotemporal host community composition. Of 1,127 blood meals successfully identified to species level, >99% of blood meals were from 65 avian hosts in 27 families and 11 orders, and only seven were from mammalian hosts representing three species. We developed an empirically informed mathematical model for EEE virus transmission using Cs. melanura abundance and preferred and non-preferred avian hosts. To our knowledge this is the first mathematical model for EEE virus, a pathogen with many potential hosts, in the northeastern U.S. We measured strong feeding preferences for a number of avian species based on the proportion of mosquito blood meals identified from these bird species in relation to their observed frequencies. These included: American Robin, Tufted Titmouse, Common Grackle, Wood Thrush, Chipping Sparrow, Black-capped Chickadee, Northern Cardinal, and Warbling Vireo. We found that these bird species, most notably Wood Thrush, play a dominant role in supporting EEE virus amplification. It is also noteworthy that the competence of some of the aforementioned avian species for EEE virus has not been established. Our findings indicate that heterogeneity induced by mosquito host preference, is a key mediator of the epizootic transmission of vector-borne pathogens.

Conclusion and significance

Detailed knowledge of the vector-host interactions of mosquito populations in nature is essential for evaluating their vectorial capacity and for assessing the role of individual vertebrates as reservoir hosts involved in the maintenance and amplification of zoonotic agents of human diseases. Our study clarifies the host associations of Cs. melanura in four EEE virus foci in the northeastern U.S., identifies vector host preferences as the most important transmission parameter, and quantifies the contribution of preference-induced contact heterogeneity to enzootic transmission. Our study identifies Wood Thrush, American Robin and a few avian species that may serve as superspreaders of EEE virus. Our study elucidates spatiotemporal host species utilization by Cs. melanura in relation to avian host community. This research provides a basis to better understand the involvement of Cs. melanura and avian hosts in the transmission and ecology of EEE virus and the risk of human infection in virus foci.  相似文献   

17.
The interplay between the Apicomplexan parasite Toxoplasma gondii and its host has been largely studied. However, molecular changes at the metabolic level in the host central nervous system and pathogenesis-associated metabolites during brain infection are largely unexplored. We used a global metabolomics strategy to identify differentially regulated metabolites and affected metabolic pathways in BALB/c mice during infection with T. gondii Pru strain at 7, 14 and 21 days post-infection (DPI). The non-targeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics analysis detected approximately 2,755 retention time-exact mass pairs, of which more than 60 had significantly differential profiles at different stages of infection. These include amino acids, organic acids, carbohydrates, fatty acids, and vitamins. The biological significance of these metabolites is discussed. Principal Component Analysis and Orthogonal Partial Least Square-Discriminant Analysis showed the metabolites’ profile to change over time with the most significant changes occurring at 14 DPI. Correlated metabolic pathway imbalances were observed in carbohydrate metabolism, lipid metabolism, energetic metabolism and fatty acid oxidation. Eight metabolites correlated with the physical recovery from infection-caused illness were identified. These findings indicate that global metabolomics adopted in this study is a sensitive approach for detecting metabolic alterations in T. gondii-infected mice and generated a comparative metabolic profile of brain tissue distinguishing infected from non-infected host.  相似文献   

18.
Step gradients of polyvinylpyrolidone-coated colloidal silica particles (Percoll) were used to isolate and purify early development stages of Schistosoma mansoni (cercariae, skin stage, and 5-day-old schistosomula). With this method, mechanically transformed schistosomula can be isolated in higher purity and yield than that obtained with conventional procedures. In addition, use of the method revealed that schistosomula undergo a dramatic change in density during the first hours after transformation from cercariae. In other experiments, 5-day-old schistosomula were effectively purified from contaminating lung tissue by means of the Percoll gradient procedure. After purification on Percoll, schistosomula display no evidence of damage when examined by light microscopy and no loss in viability as judged by recovery of adult worms from mice.  相似文献   

19.
Thyroxine-treated flukes showed increased tetrazolium reductase and cytochrome oxidase activities in histochemical preparations. Single male, single female, and pairs of S. douthitti, as well as cercariae of this species, consumed more oxygen when treated with thyroxine than did controls. The same effect was observed in all other invertebrates examined (Haematoloechus sp., Dugesia sp., Tetrahymena pyriformis, and an unidentified strigeoid species of cercaria).Both male and female schistosomes from hyperthyroid hosts are significantly larger than flukes from normal mice (P < 0.025). This condition prevailed whether the hyperthyroid state was established prior to cercarial penetration or after schistosomular migration through the lungs. S. douthitti adults from surgically thyroidectomized rats were significantly smaller than flukes from sham-operated sibling controls (P < 0.01). An accelerated death rate was also observed in hyperthyroid mice infected with S. douthitti.Female schistosomes from unisexual infections were significantly smaller (P < 0.1) than those from bisexual infections, confirming Short's (1952) report.  相似文献   

20.
Human cercarial dermatitis (HCD) caused by avian schistosomes is an emerging health issue in different parts of the world. Nevertheless, parasite diversity, life cycle, and involvement in HCD remain poorly known or neglected in South America. Herein, we reported data obtained during a long-term malacological survey carried out in Pampulha Reservoir, an urban eutrophic waterbody from Brazil between 2009 and 2012. An ocellate brevifurcate cercaria emerged from 55 of 16,235 (0.34%) specimens of Biomphalaria straminea. Samples of the cercariae were subjected to morphological, experimental, and molecular study (analysis of partial sequences of nuclear 28S and mitochondrial cox1 genes). The molecular analysis revealed that the larva corresponds to an avian schistosome; however, it does not correspond to any named genus. A close related isolate was previously reported in Biomphalaria sudanica from Kenya (molecular divergences of 0.54% and 9.62% for 28S and cox1, respectively). The morphology of this cercaria was compared with other avian schistosome larvae from Biomphalaria spp. Attempts to infect experimentally ducks (Cairina moschata) and mice revealed cutaneous manifestations after exposure to cercariae, but adult parasites were not obtained in these hosts. Phylogenetic analysis suggests this parasite is a putative new genus and species of avian schistosome. The potential involvement of the larvae herein described in cases of HCD in Brazil cannot be ruled out. Surprisingly, HCD was not reported in the country so far, which can be related to difficulties in its diagnosis in areas of overlap with human schistosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号