首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rather widespread idea on the functional importance of sphingolipids in cell membranes refers to the occurrence of ordered domains enriched in sphingomyelin and ceramide that are largely assumed to exist irrespective of the type of N-acyl chain in the sphingolipid. Ceramides and sphingomyelins are the simplest kind of two-chained sphingolipids and show a variety of species, depending on the fatty acyl chain length, hydroxylation, and unsaturation. Abundant evidences have shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics, and miscibility, and that even the usually conceived “condensed” sphingolipids and many of their mixtures may exhibit liquid-like expanded states. Their lateral miscibility properties are subtlety regulated by those chemical differences. Even between ceramides with different acyl chain length, their partial miscibility is responsible for a rich two-dimensional structural variety that impacts on the membrane properties at the mesoscale level. In this review, we will discuss the miscibility properties of ceramide, sphingomyelin, and glycosphingolipids that differ in their N-acyl or oligosaccharide chains. This work is a second part that accompanies a previous overview of the properties of membranes formed by pure ceramides or sphingomyelins, which is also included in this Special Issue.  相似文献   

2.
Ceramides, the simplest kind of two-chained sphingolipids, contain a single hydroxyl group in position 1 of the sphingoid base. Sphingomyelins further contain a phosphocholine group at the OH of position 1 of ceramide. Ceramides and sphingomyelins show a variety of species depending on the fatty acyl chain length, hydroxylation, and unsaturation. Because of the relatively high transition temperature of sphingomyelin compared to lecithin and, particularly, of ceramides with 16:0–18:0 saturated chains, a widespread idea on their functional importance refers to formation of rather solid domains enriched in sphingomyelin and ceramide. Frequently, and especially in the cell biology field, these are generally (and erroneously) assumed to occur irrespective on the type of N-acyl chain in these lipids. This is because most studies indicating such condensed ordered domains employed sphingolipids with acyl chains with 16 carbons while scarce attention has been focused on the influence of the N-acyl chain on their surface properties. However, abundant evidence has shown that variations of the N-acyl chain length in ceramides and sphingomyelins markedly affect their phase state, interfacial elasticity, surface topography, electrostatics and miscibility and that, even the usually conceived “condensed” sphingolipids and many of their mixtures, may exhibit liquid-like expanded states. This review is a summarized overview of our work and of related others on some facts regarding membranes composed of single molecular species of ceramide and sphingomyelin. A second part is dedicated to discuss the miscibility properties between species of sphingolipids that differ in N-acyl and oligosaccharide chains.  相似文献   

3.
The high level of interest in the cyclodepsipeptides family in the natural products stems from their diverse range of biological activities. One of the cyclodepsipeptides, (−)-bassianolide, represents rich pharmacophores with diverse biological activities including potential cytotoxicity to various cancer cells. Efficient total synthesis of (−)-bassianolide was designed and achieved in nine steps, with significant improvements in the overall yield of 46.8% (vs. 7.2% yield in previous synthesis) using Ghosez’s chloroenamine reagent under mild conditions. The cytotoxicity of the (−)-bassianolide was evaluated against five human tumor cells, and the results showed that the (−)-bassianolide displayed significant cytotoxicity against A549, SK-OV-3, HepG2, HCT-15, MCF-7 and MDA-MB 231 cell lines with IC50 values of 7.24, 8.44, 15.39, 6.40, 11.42 and 3.98 μg/mL respectively. Specifically, (−)-bassianolide induced G0/G1 arrest associated with a decrease of cyclin A, D1 and an increase of p53, MDM2, and p21 expression in MDA-MB 231 cells. These results demonstrate that (−)-bassianolide possesses antitumor activities via arresting of the cell cycle and the synthetic approach features an efficient and mild method for the formation of amide bonds through three inter- and intramolecular coupling reactions.  相似文献   

4.
CSN5/JAB1 is a critical subunit of the COP9 signalosome (CSN) and is overexpressed in many human cancers, but little is known about the role of CSN5 in colorectal cancer (CRC). To explore the functional role of CSN5 in colorectal tumorigenesis, we applied siRNA technology to silence CSN5 in HeLa, SW480, HCT116, HT29, and CaCo2 cells. CSN5 knock-down led to reduced β-catenin and phospho-bcatenin levels and this was paralleled by reduced CRC cell proliferation and reduced apoptosis rates, whereas the short-term β-catenin protein stability was enhanced by CSN5 knock-down in SW480 cells. Together, these data implicate the CSN in the pathogenesis of CRC via regulation of the Wnt/β-catenin pathway  相似文献   

5.
Ras homolog gene family member A (RhoA) has been iden- tified as a critical regulator of tumor aggressive behavior. In this study, we assessed the role of RhoA in the mechan- isms underlying growth, migration, and invasion of squa- mous cell carcinoma of tongue (TSCC). Stable RhoA knockdown of TSCC cell lines SCC-4 and CAL27 were achieved using Lentiviral transfection. The effects of RhoA depletion on cell migration, invasion, and cell proliferation were determined. The possible underlying mechanism of RhoA depletion on TSCC cell line was also evaluated by determining the expression of Galectin-3 (Gal-3), β-catenin, and matrix metalloproteinase-9 (MMP-9) in vivo. Meanwhile, the underlying mechanism of TSCC growth was studied by analysis of cyclin D1/2, p21clel/WArl, and p27 kiap 1 protein levels. Immunohistochemical assess- ments were performed to further prove the alteration of Gal-3 and β-catenin expression. We found that, in mice injected with human TSCC cells in the tongue, RhoA levels were higher in primary tumors and metastasized lymph nodes compared with those in the normal tissues. Silencing of RhoA significantly reduced the tumor growth, decreased the levels of Gai-3, β-catenin, MMP-9, and cyclin D1/2, and increased the levels of p21 CIPI/WAFI and p27Kiap 1. In vitro, RhoA knockdown also led to inhibition of cell migration, in- vasion, and proliferation. Our data suggest that RhoA plays a significant role in TSCC progression by regulating cell migra- tion and invasion through Wnt/β-catenin signaling pathway and cell proliferation through cell cycle regulation, respecti- vely. RhoA might be a novel therapeutic target of TSCC.  相似文献   

6.
Type II phosphatidylinositol (PtdIns) 4-kinases produce PtdIns 4-phosphate, an early key signaling molecule in phosphatidylinositol cycle, which is indispensable for T cell activation. Type II PtdIns 4-kinase alpha and beta have similar biochemical properties. To distinguish these isoforms Epigallocatechin gallate (EGCG) has been evaluated as a specific inhibitor. EGCG is the major active catechin in green tea having anti-inflammatory, antiatherogenic and cancer chemopreventive properties. The precise mechanism of actions and molecular targets of EGCG in early signaling cascades are not well understood. In the present study, we have shown that EGCG inhibits type II PtdIns 4-kinases (α and β isoforms) and PtdIns 3-kinase activity in vitro. EGCG directly bind to both alpha and beta isoforms of type II PtdIns 4-kinases with a Kd of 2.62 μM and 1.02 μM, respectively. Type II PtdIns 4-kinase-EGCG complex have different binding pattern at its excited state. Both isoforms showed significant change in helicity upon binding with EGCG. EGCG modulates its effect by interacting with ATP binding pocket; the residues likely to be involved in EGCG binding were predicted by Autodock. Our findings suggest that EGCG inhibits two isoforms and could be a key to regulate T cell activation.  相似文献   

7.
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions.Aberrant glycosylation can lead to uncontrolled cell proliferation,cell-matrix interactions,migration and differentiation,and has been shown to be involved in cancer and other diseases.The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream.This cellular transformation process,which is associated by morphological change,loss of epithelial traits and gain of mesenchymal markers,is triggered by the secreted cytokine transforming growth factor-β(TGF-β).TGF-βbioactivity is carefully regulated,and its effects on cells are mediated by its receptors on the cell surface.In this review,we first provide a brief overview of major types of glycans,namely,N-glycans,O-glycans,glycosphingolipids and glycosaminoglycans that are involved in cancer progression.Thereafter,we summarize studies on how the glycosylation of TGF-βsignaling components regulates TGF-βsecretion,bioavailability and TGF-βreceptor function.Then,we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer.Identifying and understanding the mechanisms by which glycosylation affects TGF-βsignaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.  相似文献   

8.
9.
10.
11.
A number of mutant forms of the antirestriction protein ArdA encoded by theardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction–modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the antirestriction motif with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction–modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

12.
Recent biophysical data suggest that the properties of ceramide observed in model membranes may apply to biological systems. In particular, the ability of ceramide to form microdomains, which coalesce into larger platforms or macrodomains, appears to be important for some cellular signaling processes. Several laboratories have now demonstrated similar reorganization of plasma membrane sphingolipid rafts, via ceramide generation, into macrodomains. This event appeared necessary for signaling upon activation of a specific set of cell surface receptors. In this article, we review the properties and functions of rafts, and the role of sphingomyelinase and ceramide in the biogenesis and re-modeling of these rafts. As clustering of some cell surface receptors in these domains may be critical for signal transduction, we propose a new model for transmembrane signal transmission.  相似文献   

13.
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression and has an important role during cancer invasion and metastasis. Although fucosyltransferase IV (FUT4) has been implicated in the modulation of cell migration, invasion and cancer metastasis, its role during EMT is unclear. This study explores the molecular mechanisms of the involvement of FUT4 in EMT in breast cancer cells. Breast cancer cell lines display increased expression of FUT4, which is accompanied by enhanced appearance of the mesenchymal phenotype and which can be reversed by knockdown of endogenous FUT4. Moreover, FUT4 induced activation of phosphatidylinositol 3-kinase (PI3K)/Akt, and inactivation of GSK3β and nuclear translocation of NF-κB, resulting in increased Snail and MMP-9 expression and greater cell motility. Taken together, these findings indicate that FUT4 has a role in EMT through activation of the PI3K/Akt and NF-κB signaling systems, which induce the key mediators Snail and MMP-9 and facilitate the acquisition of a mesenchymal phenotype. Our findings support the possibility that FUT4 is a novel regulator of EMT in breast cancer cells and a promising target for cancer therapy.  相似文献   

14.
Transforming growth factor β (TGF-β) modulates tumor progression by regulating cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. Biological and pharmacological agonists/antagonists, the interplay between intracellular signaling pathways, and microRNAs (miRNAs) control the initiation and activation of the TGF-β signaling pathway. It has been proposed that the expression profiles of tumor suppressor and oncogenic TGF-β miRNAs may be used for the classification, diagnosis, and prognosis of human malignancies. Deregulated miRNAs and aberrant activation of TGF-β signaling are frequently found in human colorectal cancers (CRCs), but a little is known about their mechanisms of action in the development and progression of colorectal carcinoma. This review summarizes the current knowledge of the role of TGF-β signaling regulatory miRNAs in the pathogenesis of CRC for a better understanding and hence better management of this disease.  相似文献   

15.
16.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   

17.
We herein report a faster and less cumbersome synthesis of the biologically attractive, α-galactosyl ceramide (α-GalCer), known as KRN7000, and its analogues. More importantly, the use of a silicon tethered intramolecular glycosylation reaction gave easy access to the diglycosyl ceramide Gal(α12)GalCer, which has been shown to require uptake and processing to the biologically active α-GalCer derivative.  相似文献   

18.
19.
It is well documented that a proliferation-inducing ligand (APRIL), a newly found member of tumor necrosis factor superfamily, overexpressed in the majority of malignancies, plays a potential role in the occurrence and development of these tumors. Herein, we demonstrated that APRIL depletion by using RNA interference in human colorectal cancer (CRC) COLO 205 and SW480 cells resulted in cell proliferation inhibition and evoked cell cycle arrest in G0/G1 phase and apoptosis, coupled with decrease in CDK2, Cyclin D1, Bcl-2 expression and an increase of p21 and Bax expression. In addition, the decreased expression of transforming growth factor-β1 (TGF-β1) and p-ERK was also showed in siRNA-APRIL transfected COLO 205 and SW480 cells, whereas the protein expression levels of Smad2/3, p-Smad2/3, and ERK were not significantly changed. Taken together, our results indicate that APRIL depletion induces cell cycle arrest and apoptosis partly through blocking noncanonical TGF-β1/ERK, rather than canonical TGF-β1/Smad2/3, signaling pathway in CRC cells. Moreover, our study highlights APRIL as a potential molecular target for the therapy of CRC.  相似文献   

20.
Yuan G  Wang C  Ma C  Chen N  Tian Q  Zhang T  Fu W 《PloS one》2012,7(3):e34004
The Wnt/β-catenin signaling pathway plays important roles in the progression of colon cancer. DACT1 has been identified as a modulator of Wnt signaling through its interaction with Dishevelled (Dvl), a central mediator of both the canonical and noncanonical Wnt pathways. However, the functions of DACT1 in the WNT/β-catenin signaling pathway remain unclear. Here, we present evidence that DACT1 is an important positive regulator in colon cancer through regulating the stability and sublocation of β-catenin. We have shown that DACT1 promotes cancer cell proliferation in vitro and tumor growth in vivo and enhances the migratory and invasive potential of colon cancer cells. Furthermore, the higher expression of DACT1 not only increases the nuclear and cytoplasmic fractions of β-catenin, but also increases its membrane-associated fraction. The overexpression of DACT1 leads to the increased accumulation of nonphosphorylated β-catenin in the cytoplasm and particularly in the nuclei. We have demonstrated that DACT1 interacts with GSK-3β and β-catenin. DACT1 stabilizes β-catenin via DACT1-induced effects on GSK-3β and directly interacts with β-catenin proteins. The level of phosphorylated GSK-3β at Ser9 is significantly increased following the elevated expression of DACT1. DACT1 mediates the subcellular localization of β-catenin via increasing the level of phosphorylated GSK-3β at Ser9 to inhibit the activity of GSK-3β. Taken together, our study identifies DACT1 as an important positive regulator in colon cancer and suggests a potential strategy for the therapeutic control of the β-catenin-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号