首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS.  相似文献   

2.
To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73–92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.  相似文献   

3.
Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease in the central nervous system (CNS). Melatonin is an effective treatment in MS patients and experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Melatonin secretion peaks at 2 AM, concomitant with the time at which the muscles are resting and the body is exerting its antioxidant activity. The current study was designed to investigate combination treatment of baclofen, a muscle relaxant drug, and melatonin in EAE mice. Results showed that melatonin (Mel) alone or in combination with baclofen (Bac + Mel) reduced clinical scores and demyelination by significantly increasing myelin oligodendrocyte glycoprotein (MOG) levels, a marker for mature oligodendrocytes, compared to EAE mice. Moreover, Mel or Bac + Mel therapy caused a significant increase in IL-4 serum levels, an anti-inflammatory cytokine, whereas IFN-γ serum levels, a pro-inflammatory cytokine, were significantly reduced. On the other hand, Mel or Bac + Mel caused a significant reduction in malondialdehyde (MDA) levels, a marker of oxidative stress, in comparison to EAE mice. In contrast, the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) was significantly increased in Mel and Bac + Mel groups. In summary, combination therapy improved clinical scores and tend to enhance the efficiency of melatonin treatment by further promoting remyelination, decreasing inflammation, and stimulating the activity of antioxidant enzymes, which suggests that prior spasticity treatment increases the efficacy of melatonin therapy in EAE mouse model of MS. Further experimental and clinical studies are needed to ensure the beneficial role of this combination strategy.  相似文献   

4.
Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26–37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis.  相似文献   

5.
目的探讨C57BL/6J小鼠建立实验性自身免疫性脑脊髓炎(EAE)模型的可能性及其发病特点。方法使用PLP139-151抗原及其C57BL/6J小鼠自制脑脊髓匀浆(spinal cord homogenate,SCH)免疫C57BL/6J小鼠,使用完全福(氏)免疫佐剂为免疫佐剂,并在尾静脉注射百日咳杆菌,建立EAE模型,与经典的PLP139-151免疫的SJL/J小鼠EAE模型进行对比。结果PLP139-151免疫C57BL/6J小鼠仅有一只小鼠表现为尾部张力明显降低;自制SCH免疫C57BL/6J小鼠可见明显脱髓鞘改变。与PLP139-151免疫SJL/J小鼠组相比发病率较低(P〈0.05),神经功能评分比较没有明显差异(P〉0.05),但发病时间长于PLP139-151免疫SJL/J小鼠组(P〈0.05)。结论SCH免疫C57BL/6J小鼠的EAE动物模型,主要表现为急性单相病程,从临床表现和病理学特点来看符合人类MS的病理特点,值得在以后的研究中进一步研究探讨。  相似文献   

6.
The voltage-gated Kv1.3 K(+) channel in effector memory T cells serves as a new therapeutic target for multiple sclerosis. In our previous studies, the novel peptide ADWX-1 was designed and synthesized as a specific Kv1.3 blocker. However, it is unclear if and how ADWX-1 alleviates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. In this study, the administration of ADWX-1 significantly ameliorated the rat experimental autoimmune encephalomyelitis model by selectively inhibiting CD4(+)CCR7(-) phenotype effector memory T cell activation. In contrast, the Kv1.3-specific peptide had little effect on CD4(+)CCR7(+) cells, thereby limiting side effects. Furthermore, we determined that ADWX-1 is involved in the regulation of NF-κB signaling through upstream protein kinase C-θ (PKCθ) in the IL-2 pathway of CD4(+)CCR7(-) cells. The elevated expression of Kv1.3 mRNA and protein in activated CD4(+)CCR7(-) cells was reduced by ADWX-1 engagement; however, an apparent alteration in CD4(+)CCR7(+) cells was not observed. Moreover, the selective regulation of the Kv1.3 channel gene expression pattern by ADWX-1 provided a further and sustained inhibition of the CD4(+)CCR7(-) phenotype, which depends on the activity of Kv1.3 to modulate its activation signal. In addition, ADWX-1 mediated the activation of differentiated Th17 cells through the CCR7(-) phenotype. The efficacy of ADWX-1 is supported by multiple functions, which are based on a Kv1.3(high) CD4(+)CCR7(-) T cell selectivity through two different pathways, including the classic channel activity-associated IL-2 pathway and the new Kv1.3 channel gene expression pathway.  相似文献   

7.
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the immune system. DCs present antigens to CD8 and CD4 T cells in the context of class I or II MHC. Recent evidence suggests that autophagy, a conserved intracellular degradation pathway, regulates class II antigen presentation. In vitro studies have shown that deletion of autophagy-related genes reduced antigen presentation by APCs to CD4 T cells. In vivo studies confirmed these findings in the context of infectious diseases. However, the relevance of autophagy-mediated antigen presentation in autoimmunity remains to be elucidated. Here, we report that loss of autophagy-related gene 7 (Atg7) in DCs ameliorated experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-mediated mouse model of multiple sclerosis, by reducing in vivo priming of T cells. In contrast, severity of hapten-induced contact hypersensitivity, in which CD8 T cells and NK cells play major roles, was unaffected. Administration of the autophagy-lysosomal inhibitor chloroquine, before EAE onset, delayed disease progression and, when administered after the onset, reduced disease severity. Our data show that autophagy is required in DCs for induction of EAE and suggest that autophagy might be a potential target for treating CD4 T cell-mediated autoimmune conditions.  相似文献   

8.
Glia maturation factor (GMF), a highly conserved brain-specific protein, isolated, sequenced and cloned in our laboratory. Overexpression of GMF in astrocytes induces the production and secretion of granulocyte-macrophage-colony stimulating factor (GM-CSF), and subsequent immune activation of microglia, expression of several proinflammatory genes including major histocompatibility complex proteins, IL-1β, and MIP-1β, all associated with the development of experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Based on GMF’s ability to activate microglia and induce well-established proinflammatory mediators, including GM-CSF, we hypothesize that GMF is involved in the pathogenesis of inflammatory disease EAE. In this present investigation, using GMF-deficient mice, we study the role of GMF and how the lack of GMF affects the EAE disease. Our results show a significant decrease in incidence, delay in onset, and reduced severity of EAE in GMF-deficient mice, and support the hypothesis that GMF plays a major role in the pathogenesis of disease.  相似文献   

9.
多发性硬化(MS)是中青年非外伤性致残的最常见原因,但是MS的发病机制迄今尚不完全明了。核磁共振成像(MRI)是目前诊断、监测MS的重要手段。实验性自身免疫性脑脊髓炎(EAE)是公认的研究人类MS的动物模型,MRI为EAE模型的评估提供直接、客观的影像学依据。理想的EAE大鼠模型不仅有助于开展对MS的防治、发病机理、相关药物开发等多方面的研究,而且为MRI提供合适的研究平台,对MS早期诊断、病情的监测和评价提供重要线索。  相似文献   

10.
Current treatments and emerging oral therapies for multiple sclerosis (MS) are limited by effectiveness, cost, and/or toxicity. Genetic and environmental factors that alter the branching of Asn (N)-linked glycans result in T cell hyperactivity, promote spontaneous inflammatory demyelination and neurodegeneration in mice, and converge to regulate the risk of MS. The sugar N-acetylglucosamine (GlcNAc) enhances N-glycan branching and inhibits T cell activity and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Here, we report that oral GlcNAc inhibits T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE when administered after disease onset. Oral GlcNAc increased expression of branched N-glycans in T cells in vivo as shown by high pH anion exchange chromatography, MALDI-TOF mass spectroscopy and FACS analysis with the plant lectin l-phytohemagglutinin. Initiating oral GlcNAc treatment on the second day of clinical disease inhibited MOG-induced EAE as well as secretion of interferon-γ, tumor necrosis factor-α, interleukin-17, and interleukin-22. In the more severe 2D2 T cell receptor transgenic EAE model, oral GlcNAc initiated after disease onset also inhibits clinical disease, except for those with rapid lethal progression. These data suggest that oral GlcNAc may provide an inexpensive and nontoxic oral therapeutic agent for MS that directly targets an underlying molecular mechanism causal of disease.  相似文献   

11.

One of the most substantial and established environmental risk factors for neurological and psychiatric disorders is stress exposure, whose detrimental consequences hinge on several variables including time. In this regard the gestational period is known to present an intrinsic vulnerability to environmental insults and thus stressful events during pregnancy can lead to severe consequences on the offspring’s brain development with long-term repercussions throughout adulthood. On this basis, we investigated the long-lasting impact of prenatal stress exposure on the susceptibility to the experimental autoimmune encephalomyelitis (EAE), a well-established murine model of multiple sclerosis. Although stress is considered a triggering factor for this chronic, progressive, autoimmune disease, little is known about the underlying mechanisms. To this end, EAE was induced by immunization with MOG35-55/CFA and pertussis toxin administration in adult female C57BL/6 mice born from control or stressed dams exposed to restraint stress during the last days of gestation. Our results demonstrate that gestational stress induces a marked increase in the severity of EAE symptoms in adulthood. Further, we highlight an altered maturation of oligodendrocytes in the spinal cord of prenatally stressed EAE mice, as indicated by the higher levels of GPR17, a marker of immature oligodendrocyte precursor cells. These behavioral and molecular alterations are paralleled by changes in the expression and signaling of the neurotrophin BDNF, an important mediator of neural plasticity that may contribute to stress-induced impaired remyelination. Since several already marketed drugs are able to modulate BDNF levels, these results pave the way to the possibility of repositioning these drugs in multiple sclerosis.

  相似文献   

12.
目的比较Wistar大鼠和Sprague-Dawley(SD)大鼠实验性自身免疫性脑脊髓炎(EAE)发病情况。方法注射以豚鼠脊髓匀浆-完全福氏佐剂制备的完全抗原,辅以百日咳疫苗加强诱导,复制Wistar大鼠和SD大鼠EAE模型,比较两组大鼠EAE的神经症状及中枢神经不同部位病理学改变。结果Wistar大鼠组发病数、潜伏期、发病达峰时间以及神经症状最高评分分别为9/12、12.33±1.37、15.17±3.19、1.33±0.41;SD大鼠组分别为11/12、15.88±0.64、18.63±1.52、3.13±1.89;两组大鼠相比,SD大鼠EAE潜伏期延长(P〈0.01),达峰时间相应推迟(P〈0.05),但神经症状较Wistar大鼠严重(P〈0.05);病理结果显示,两组大鼠CNS均以脑干病理改变最为严重,而大脑病变最轻,SD大鼠总体中枢系统炎症改变较Wistar大鼠严重(标准评分P〈0.01,血管套计数P〈0.05)。结论SD大鼠EAE与Wistar大鼠EAE比较,发病过程很相似:发病率接近,中枢炎症病理改变相仿,两者均以脑干炎症变化最严重;略有不同点是:SD大鼠EAE发病潜伏期较长(P〈0.01),神经症状较严重(P〈0.05),总体中枢炎症改变较为严重。故SD大鼠也是制备EAE模型的理想实验动物。  相似文献   

13.
Multiple sclerosis is a chronic neuroinflammatory demyelinating disorder of the central nervous system with a strong neurodegenerative component. While the exact etiology of the disease is yet unclear, autoreactive T lymphocytes are thought to play a central role in its pathophysiology. MS therapy is only partially effective so far and research efforts continue to expand our knowledge on the pathophysiology of the disease and to develop novel treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for MS sharing many clinical and pathophysiological features. There is a broad diversity of EAE models which reflect different clinical, immunological and histological aspects of human MS. Actively-induced EAE in mice is the easiest inducible model with robust and replicable results. It is especially suited for investigating the effects of drugs or of particular genes by using transgenic mice challenged by autoimmune neuroinflammation. Therefore, mice are immunized with CNS homogenates or peptides of myelin proteins. Due to the low immunogenic potential of these peptides, strong adjuvants are used. EAE susceptibility and phenotype depends on the chosen antigen and rodent strain. C57BL/6 mice are the commonly used strain for transgenic mouse construction and respond among others to myelin oligodendrocyte glycoprotein (MOG). The immunogenic epitope MOG35-55 is suspended in complete Freund''s adjuvant (CFA) prior to immunization and pertussis toxin is applied on the day of immunization and two days later. Mice develop a "classic" self-limited monophasic EAE with ascending flaccid paralysis within 9-14 days after immunization. Mice are evaluated daily using a clinical scoring system for 25-50 days. Special considerations for care taking of animals with EAE as well as potential applications and limitations of this model are discussed.  相似文献   

14.
Journal of Evolutionary Biochemistry and Physiology - Multiple sclerosis (MS) is a disease of the central nervous system of unknown cause and limited therapeutical treatments. In this study we...  相似文献   

15.
Susceptibility-weighted imaging (SWI) detects hypointensities due to iron deposition and deoxyhemoglobin. Previously it was shown that SWI detects hypointensities in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), most of which are due to intravascular deoxyhemoglobin, with a small proportion being due to iron deposition in the central nervous system parenchyma and demyelination. However, animals had to be sacrificed to differentiate these two types of lesions which is impractical for time course studies or for human application. Here, we proposed altering the inspired oxygen concentration during imaging to identify deoxyhemoglobin-based hypointensities in vivo. SWI was performed on lumbar spinal cords of naive control and EAE mice using 30% O2 then 100% O2. Some mice were imaged using 30% O2, 100% O2 and after perfusion. Most SWI-visible hypointensities seen with 30% O2 changed in appearance upon administration of 100% O2, and were not visible after perfusion. That hypointensities changed with hyperoxygenation indicates that they were caused by deoxyhemoglobin. We show that increasing the inspired oxygen concentration identifies deoxyhemoglobin-based hypointensities in vivo. This could be applied in future studies to investigate the contribution of vascular-based hypointensities with SWI in EAE and MS over time.  相似文献   

16.
目的研究肾上腺切除导致下丘脑-垂体-肾上腺(HPA)轴功能缺陷对Wistar大鼠诱发的实验性自身免疫性脑脊髓炎(EAE)的敏感性的影响。方法 Wistar大鼠单、双侧肾上腺切除后,用GPSCH-CFA诱导各组大鼠产生EAE,并观察临床评分、MBP抗体、皮质醇、Th1细胞因子和脑组织Bcl-2/Bax蛋白表达的变化,并与Lewis大鼠的EAE模型进行比较。结果 GPSCH-CFA诱导后,双侧切除肾上腺的Wistar大鼠平均神经症状评分最高为4.60分,发病率为100%,血清中皮质醇水平明显降低和MBP抗体水平明显升高,IFN-γ、TNF-α和IL-2水平均明显升高,大脑皮层和下丘脑中Bcl-2蛋白表达均明显降低和Bax蛋白表达均明显升高。结论双侧肾上腺切除导致HPA功能缺陷能显著增加Wistar大鼠诱发EAE的敏感性。  相似文献   

17.
Accelerometers are incorporated into many consumer devices providing new ways to monitor gait, mobility, and fall risk. However, many health benefits have not been realised because of issues with data quality that results from gravitational ‘cross-talk’ when the wearable device is tilted. Here we present an adaptive filter designed to improve the quality of accelerometer data prior to measuring dynamic pelvic sway patterns during a six minute walk test in people with and without Multiple Sclerosis (MS). Optical motion capture was used as the gold standard. Improved wearable device accuracy (≤4.4% NRMSE) was achieved using gyroscopic corrections and scaling filter thresholds by step frequency. The people with MS presented significantly greater pelvis sway range to compensate for their lower limb weaknesses and joint contractures. The visualisation of asymmetric pelvic sway in people with MS illustrates the potential to better understand their mobility impairments for reducing fall risk.  相似文献   

18.
Neurodegenerative diseases provoke robust immunological reactions in the central nervous system (CNS), which further deteriorate the neural tissue damage. We hypothesized that the expression levels of indoleamine 2,3-dioxygenase (IDO), an enzyme that has potent immune suppressive activities, in neural stem cells (NSCs) would have synergistic therapeutic effects against neurodegenerative diseases, since NSCs themselves have low IDO expression. In this study, the synergistic immune suppressive effects of rat fetal NSCs expressing IDO (rfNSCs-IDO) were validated by mixed leukocyte reaction (MLR) in vitro and an experimental autoimmune encephalomyelitis (EAE) animal model in vivo. rfNSCs-IDO showed significantly more suppressive effects on T cell proliferation in the MLR compared to control rfNSCs (rfNSCs-Cont). Importantly, IDO inhibition using 1-methyl-DL-tryptophan (1-MT), an IDO inhibitor, reversed the synergistic effects, confirming IDO-specific effects in rfNSCs-IDO. In the EAE animal model, systemic rfNSCs-IDO injections resulted in significant local immune suppression in the cervical lymph nodes and CNS, evidenced by a reduction in the number of activated T lymphocytes and an increase in regulatory T cell numbers, which induced significantly fewer clinical symptoms and faster recovery. In contrast, rfNSCs-Cont failed to reduce symptoms in the EAE animal models, although they showed local immune suppression, which was significantly less than that in rfNSCs-IDO. Taken together, IDO expression in NSCs synergistically potentiates the immune suppression activities of NSCs and could be applicable for the development of therapeutic modalities against various neurodegenerative diseases.  相似文献   

19.
Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some transgenic/gene knockout and other studies on low-EAE susceptibility backgrounds with inconsistent disease course and susceptibility.  相似文献   

20.
Glial fibrillary acidic protein (GFAP) in the spinal cords of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) was quantitated by densitometry of both stained gels and immunoblots of electrophoretically separated cytoskeletal proteins. The experimental period ranged from 7 to 65 days postinoculation (dpi). Greater than 92% of the total spinal cord GFAP was recovered in the Triton-insoluble cytoskeletal pellet; less than 2% was truly soluble. GFAP increased gradually and significantly with time, reaching a level one-and-a-half to two times greater than that of controls by 35 dpi and remaining elevated at 65 dpi. In EAE animals, GFAP was 33% of the total Triton-insoluble protein (excluding histones and other small basic proteins) at 7 dpi, rising to 48% at 65 dpi. Increases in vimentin were also noted, following a time course similar to that of GFAP. An increase in immunocytochemical staining of GFAP was noticeable at 10 dpi and became marked at 14 dpi, a time before GFAP levels had increased significantly. Thus, enhanced staining at the peak of the disease cannot be explained simply by an increase in antigen protein. Other possible explanations, such as an increase in soluble GFAP content, proteolytic degradation, or modifications in the immunochemical properties of GFAP in EAE animals, were ruled out. Both the biochemical and immunocytochemical increases in GFAP persisted through 65 dpi, even though the animals recovered from clinical signs at approximately 18 dpi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号