首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years, convergent evidence has emerged in support of the idea of social brain networks, specific brain regions that are interconnected and support social behaviors. One of these regions is the CA2 area of the hippocampus, a small region strongly connected with cortical and subcortical areas implicated in social behaviors. Furthermore, CA2 area is enriched in receptors for several neuromodulators that are related to various aspects of social behaviors, suggesting that this area could be a key component of social information processing in the brain. In this review, recent findings related to the physiological mechanisms underlying the role of CA2 in social memory are discussed.  相似文献   

2.
  相似文献   

3.
《Neuron》2022,110(17):2854-2866.e4
  1. Download : Download high-res image (186KB)
  2. Download : Download full-size image
  相似文献   

4.
The influence of lesion of the dorsal and ventral hippocampus on short-term memory was studied by the method of delayed conditioned reactions. It has been shown that after lesion of the dorsal hippocampus the delay considerably increases and that subsequent lesion of the ventral hippocampus completely eliminates delayed reactions. A conclusion has been drawn that the dorsal hippocampus has an inhibitory influence and the ventral hippocampus a facilitating effect on short-term memory. However the existence of a modulating effect does not imply that the hippocampus is a specific substrate of memory. A considerable part in the mechanism of memory is also played by other brain structures, which are activated together with the hippocampus. Particular importance is attached to activation of the bentromedial and lateral hypothalamus and the cortical associative areas.  相似文献   

5.
Distinct cellular functions of MK2   总被引:1,自引:0,他引:1       下载免费PDF全文
Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) is activated upon stress by p38 MAPK alpha and -beta, which bind to a basic docking motif in the C terminus of MK2 and which subsequently phosphorylate its regulatory sites. As a result of activation MK2 is exported from the nucleus to the cytoplasm and cotransports active p38 MAPK to this compartment. Here we show that the amount of p38 MAPK is significantly reduced in cells and tissues lacking MK2, indicating a stabilizing effect of MK2 for p38. Using a murine knockout model, we have previously shown that elimination of MK2 leads to a dramatic reduction of tumor necrosis factor (TNF) production in response to lipopolysaccharide. To further elucidate the role of MK2 in p38 MAPK stabilization and in TNF biosynthesis, we analyzed the ability of two MK2 isoforms and several MK2 mutants to restore both p38 MAPK protein levels and TNF biosynthesis in macrophages. We show that MK2 stabilizes p38 MAPK through its C terminus and that MK2 catalytic activity does not contribute to this stabilization. Importantly, we demonstrate that stabilizing p38 MAPK does not restore TNF biosynthesis. TNF biosynthesis is only restored with MK2 catalytic activity. We further show that, in MK2-deficient macrophages, formation of filopodia in response to extracellular stimuli is reduced. In addition, migration of MK2-deficient mouse embryonic fibroblasts (MEFs) and smooth muscle cells on fibronectin is dramatically reduced. Interestingly, reintroducing catalytic MK2 activity into MEFs alone is not sufficient to revert the migratory phenotype of these cells. In addition to catalytic activity, the proline-rich N-terminal region is necessary for rescuing the migratory phenotype. These data indicate that catalytic activity of MK2 is required for both cytokine production and cell migration. However, the proline-rich MK2 N terminus provides a distinct role restricted to cell migration.  相似文献   

6.
7.
Two-dimensional gel electrophoresis has been used to analyze protein synthesis in dorsal and ventral regions in embryonic stages of Xenopus laevis. Proteins specific either to dorsal or to ventral regions are synthesized for the first time at gastrulation, concomitant with morphological differentiation. The reliability of these proteins as markers of dorsal and ventral differentiation was tested by examining their synthesis in Uv-irradiated embryos, which have severely reduced capacity for dorsal development, reflected in reduced levels of the neuromuscular-specific enzyme acetylcholinesterase, but which continue to synthesize the great majority of proteins at normal rates. Synthesis of dorsal indicator proteins should be reduced or absent in these embryos, whereas ventral indicators should be synthesized at least to the same extent as in control embryos. Some of the putative dorsal and ventral indicators failed this test, but the majority were confirmed as reliable markers of dorsal and ventral differentiation, thus providing a connection between morphology and gene expression in the establishment of the dorsal-ventral axis in X. laevis.  相似文献   

8.
9.
The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stranded-DNA-binding protein TRF2. We sought to determine which of these functions-ssDNA, TPP1, or TRF2 binding-was required to protect chromosome ends from being detected as DNA damage. Using separation-of-function POT1 mutants deficient in one of these three activities, we found that binding to TRF2 is dispensable for protecting telomeres but fosters robust loading of POT1 onto telomeric chromatin. Furthermore, we found that the telomeric ssDNA-binding activity and binding to TPP1 are required in cis for POT1 to protect telomeres. Mechanistically, binding of POT1 to telomeric ssDNA and association with TPP1 inhibit the localization of RPA, which can function as a DNA damage sensor, to telomeres.  相似文献   

10.
11.
Buchsbaum BR  Olsen RK  Koch P  Berman KF 《Neuron》2005,48(4):687-697
To hear a sequence of words and repeat them requires sensory-motor processing and something more-temporary storage. We investigated neural mechanisms of verbal memory by using fMRI and a task designed to tease apart perceptually based ("echoic") memory from phonological-articulatory memory. Sets of two- or three-word pairs were presented bimodally, followed by a cue indicating from which modality (auditory or visual) items were to be retrieved and rehearsed over a delay. Although delay-period activation in the planum temporale (PT) was insensible to the source modality and showed sustained delay-period activity, the superior temporal gyrus (STG) activated more vigorously when the retrieved items had arrived to the auditory modality and showed transient delay-period activity. Functional connectivity analysis revealed two topographically distinct fronto-temporal circuits, with STG co-activating more strongly with ventrolateral prefrontal cortex and PT co-activating more strongly with dorsolateral prefrontal cortex. These argue for separate contributions of ventral and dorsal auditory streams in verbal working memory.  相似文献   

12.
Histone deacetylases (HDACs) are negative regulators of gene expression and have been implicated in tumorigenesis and tumor progression. Therefore, HDACs are promising targets for antitumor drugs. However, the relevant isoforms of the 18 members encompassing HDAC family have not been identified. Studies utilizing either gene targeting or knockdown approaches reveal both specific and redundant functions of the closely related class I deacetylases HDAC1 and HDAC2 in the control of proliferation and differentiation. Combined ablation of HDAC1 and HDAC2 in different cell types led to a severe proliferation defects or enhanced apoptosis supporting the idea that both enzymes are relevant targets for tumor therapy. In a recent study on the role of HDAC1 in teratoma formation we have reported a novel and surprising function of HDAC1 in tumorigenesis. In this tumor model HDAC1 attenuates proliferation during teratoma formation. In the present work we discuss new findings on redundant and unique functions of HDAC1 and HDAC2 as regulators of proliferation and tumorigenesis and potential implications for applications of HDAC inhibitors as therapeutic drugs.Key words: tumor therapy, HDAC inhibitor, teratoma, chromatin, epigenetics, proliferation, histone acetylation, tumorigenesis  相似文献   

13.
ULK1 (unc-51 like kinase 1) is a serine/threonine protein kinase that plays a key role in regulating the induction of autophagy. Recent studies using autophagy-defective mouse models, such as atg5- or atg7-deficient mice, revealed an important function of autophagy in adipocyte differentiation. Suppression of adipogenesis in autophagy-defective conditions has made it difficult to study the roles of autophagy in metabolism of differentiated adipocytes. In this study, we established autophagy defective-differentiated 3T3-L1 adipocytes, and investigated the roles of Ulk1 and its close homolog Ulk2 in lipid and glucose metabolism using the established adipocytes. Through knockdown approaches, we determined that Ulk1 and Ulk2 are important for basal and MTORC1 inhibition-induced autophagy, basal lipolysis, and mitochondrial respiration. However, unlike other autophagy genes (Atg5, Atg13, Rb1cc1/Fip200, and Becn1) Ulk1 was dispensable for adipogenesis without affecting the expression of CCAAT/enhancer binding protein α (CEBPA) and peroxisome proliferation-activated receptor gamma (PPARG). Ulk1 knockdown reduced fatty acid oxidation and enhanced fatty acid uptake, the metabolic changes that could contribute to adipogenesis, whereas Ulk2 knockdown had opposing effects. We also found that the expression levels of insulin receptor (INSR), insulin receptor substrate 1 (IRS1), and glucose transporter 4 (SLC2A4/GLUT4) were increased in Ulk1-silenced adipocytes, which was accompanied by upregulation of insulin-stimulated glucose uptake. These results suggest that ULK1, albeit its important autophagic role, regulates lipid metabolism and glucose uptake in adipocytes distinctly from other autophagy proteins.  相似文献   

14.
15.
16.
The MAPKs are key regulatory signaling molecules in many cellular processes. Here we define differential functions for ERK1 and ERK2 MAPKs in zebrafish embryogenesis. Morpholino knockdown of ERK1 and ERK2 resulted in cell migration defects during gastrulation, which could be rescued by co-injection of the corresponding mRNA. Strikingly, Erk2 mRNA cross-rescued ERK1 knockdown, but erk1 mRNA was unable to compensate for ERK2 knockdown. Cell-tracing experiments revealed a convergence defect for ERK1 morphants without a severe posterior-extension defect, whereas ERK2 morphants showed a more severe reduction in anterior-posterior extension. These defects were primary changes in gastrulation cell movements and not caused by altered cell fate specification. Saturating knockdown conditions showed that the absence of FGF-mediated dual-phosphorylated ERK2 from the blastula margin blocked initiation of epiboly, actin and tubulin cytoskeleton reorganization processes and further arrested embryogenesis, whereas ERK1 knockdown had only a mild effect on epiboly progression. Together, our data define distinct roles for ERK1 and ERK2 in developmental cell migration processes during zebrafish embryogenesis.  相似文献   

17.
Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.  相似文献   

18.
19.
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5′ UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号