首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell–matrix mechanical interactions in 3-D culture models, tissue explants and living animals.  相似文献   

2.
The use of 3D extracellular matrix (ECM) microenvironments to deliver growth-inductive signals for tissue repair and regeneration requires an understanding of the mechanisms of cell–ECM signaling. Recently, hyaluronic acid (HA) has been incorporated in collagen matrices in an attempt to recreate tissue specific microenvironments. However, it is not clear how HA alters biophysical properties (e.g. fibril microstructure and mechanical behavior) of collagen matrices or what impact these properties have on cell behavior. The present study determined the effects of varying high molecular weight HA concentration on 1) the assembly kinetics, fibril microstructure, and viscoelastic properties of 3D type I collagen matrices and 2) the response of human dermal fibroblasts, in terms of morphology, F-actin organization, contraction, and proliferation within the matrices. Results showed increasing HA concentration up to 1 mg/ml (HA:collagen ratio of 1:2) did not significantly alter fibril microstructure, but did significantly alter viscoelastic properties, specifically decreasing shear storage modulus and increasing compressive resistance. Interestingly, varied HA concentration did not significantly affect any of the measured fibroblast behaviors. These results show that HA-induced effects on collagen matrix viscoelastic properties result primarily from modulation of the interstitial fluid with no significant change to the fibril microstructure. Furthermore, the resulting biophysical changes to the matrix are not sufficient to modulate the cell–ECM mechanical force balance or proliferation of resident fibroblasts. These results provide new insight into the mechanisms by which cells sense and respond to microenvironmental cues and the use of HA in collagen-based biomaterials for tissue engineering.  相似文献   

3.
Stromal-epithelial interactions regulate mammary gland development and are critical for the maintenance of tissue homeostasis. The extracellular matrix, which is a proteinaceous component of the stroma, regulates mammary epithelial growth, survival, migration and differentiation through a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue organization, and promote cell invasion and survival. In this review, we discuss the role of stromal-epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit a dialogue with the mammary epithelium through transmembrane integrin receptors to influence tissue morphogenesis, homeostasis and malignant transformation.  相似文献   

4.
The correct control of cell fate decisions is critical for metazoan development and tissue homeostasis. It is established that the integrin family of cell surface receptors regulate cell fate by mediating cell–cell and cell–extracellular matrix (ECM) interactions. However, our understanding of how the different family members control discrete aspects of cell biology, and how this varies between tissues and is temporally regulated, is still in its infancy. An emerging area of investigation aims to understand how integrins translate changes in tension in the surrounding microenvironment into biological responses. This is particularly pertinent due to changes in the mechanical properties of the ECM having been linked to diseases, such as cancer. In this review, we provide an overview of the roles integrins play in important developmental processes, such as proliferation, polarity, apoptosis, differentiation and maintenance of “stemness”. We also discuss recent advances in integrin mechanobiology and highlight the involvement of integrins and aberrant ECM in cancer.  相似文献   

5.

Background

Hyaluronan is a critical component of extracellular matrix with several different roles. Besides the contribution to the tissue hydration, mechanical properties and correct architecture, hyaluronan plays important biological functions interacting with different molecules and receptors.

Scope of review

The review addresses the control of hyaluronan synthesis highlighting the critical role of hyaluronan synthase 2 in this context as well as discussing the recent findings related to covalent modifications which influence the enzyme activity. Moreover, the interactions with specific receptors and hyaluronan are described focusing on the importance of polymer size in the modulation of hyaluronan signaling.

Major conclusions

Due to its biological effects on cells recently described, it is evident how hyaluronan is to be considered not only a passive component of extracellular matrix but also an actor involved in several scenarios of cell behavior.

General significance

The effects of metabolism on the control of hyaluronan synthesis both in healthy and pathologic conditions are critical and still not completely understood. The hyaluronan capacity to bind several receptors triggering specific pathways may represent a valid target for new approach in several therapeutic strategies. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

6.
Tissue development is orchestrated by the coordinated activities of both chemical and physical regulators. While much attention has been given to the role that chemical regulators play in driving development, researchers have recently begun to elucidate the important role that the mechanical properties of the extracellular environment play. For instance, the stiffness of the extracellular environment has a role in orienting cell division, maintaining tissue boundaries, directing cell migration, and driving differentiation. In addition, extracellular matrix stiffness is important for maintaining normal tissue homeostasis, and when matrix mechanics become imbalanced, disease progression may ensue. In this article, we will review the important role that matrix stiffness plays in dictating cell behavior during development, tissue homeostasis, and disease progression.  相似文献   

7.
The cornea is a highly specialized transparent tissue which covers the front of the eye. It is a tough tissue responsible for refracting the light and protecting the sensitive internal contents of the eye. The biomechanical properties of the cornea are primarily derived from its extracellular matrix, the stroma. The majority of previous studies have used strip tensile and pressure inflation testing methods to determine material parameters of the corneal stroma. Since these techniques do not allow measurements of the shear properties, there is little information available on transverse shear modulus of the cornea. The primary objectives of the present study were to determine the viscoelastic behavior of the corneal stroma in shear and to investigate the effects of the compressive strain. A thorough knowledge of the shear properties is required for developing better material models for corneal biomechanics. In the present study, torsional shear experiments were conducted at different levels of compressive strain (0–30%) on porcine corneal buttons. First, the range of linear viscoelasticity was determined from strain sweep experiments. Then, frequency sweep experiments with a shear strain amplitude of 0.2% (which was within the region of linear viscoelasticity) were performed. The corneal stroma exhibited viscoelastic properties in shear. The shear storage modulus, G′, and shear loss modulus, G″, were reported as a function of tissue compression. It was found that although both of these parameters were dependent on frequency, shear strain amplitude, and compressive strain, the average shear storage and loss moduli varied from 2 to 8 kPa, and 0.3 to 1.2 kPa, respectively. Therefore, it can be concluded that the transverse shear modulus is of the same order of magnitude as the out-of-plane Young's modulus and is about three orders of magnitude lower than the in-plane Young's modulus.  相似文献   

8.
Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]−[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.  相似文献   

9.
Fibromodulin (FMOD) is a small leucine-rich proteoglycan that plays roles in a series of biological and pathophysiological processes. The interaction between FMOD and lysyl oxidase (LOX; collagen cross-linking enzyme) helps regulate extracellular matrix composition, and thereby, provides a permissive environment for regulating cellular turnover. FMOD has been mostly studied in the context of matrix component assembly, but during recent years its association with muscle development, cell reprogramming, and the angiogenic program have demonstrated its activities well beyond extracellular matrix maintenance. In fact, the involvement of FMOD in these cellular processes places it the centrum of cellular behaviour and ultimately of tissue properties. Thus, a clear view of the impact FMOD has on tissue integrity would aid its exploitation for tissue modelling and in the treatment of different disorders.  相似文献   

10.
Mechanical compression of the cartilage extracellular matrix has a significant effect on the metabolic activity of the chondrocytes. However, the relationship between the stress–strain and fluid-flow fields at the macroscopic “tissue” level and those at the microscopic “cellular” level are not fully understood. Based on the existing experimental data on the deformation behavior and biomechanical properties of articular cartilage and chondrocytes, a multi-scale biphasic finite element model was developed of the chondrocyte as a spheroidal inclusion embedded within the extracellular matrix of a cartilage explant. The mechanical environment at the cellular level was found to be time-varying and inhomogeneous, and the large difference (3 orders of magnitude) in the elastic properties of the chondrocyte and those of the extracellular matrix results in stress concentrations at the cell–matrix border and a nearly two-fold increase in strain and dilatation (volume change) at the cellular level, as compared to the macroscopic level. The presence of a narrow “pericellular matrix” with different properties than that of the chondrocyte or extracellular matrix significantly altered the principal stress and strain magnitudes within the chondrocyte, suggesting a functional biomechanical role for the pericellular matrix. These findings suggest that even under simple compressive loading conditions, chondrocytes are subjected to a complex local mechanical environment consisting of tension, compression, shear, and fluid pressure. Knowledge of the local stress and strain fields in the extracellular matrix is an important step in the interpretation of studies of mechanical signal transduction in cartilage explant culture models.  相似文献   

11.
近年来,有研究表表明从细胞微环境中转化而来的机械信号可以调控细胞形状和影响细胞的命运。然而,这些机械信号转化成调节细胞生物过程的信号的机制仍然不是十分清楚。最新研究已阐明细胞可通过来自细胞外基质(extracellular matrix,ECM)的机械信号和细胞行为调控之间的相互作用来募集Hippo信号通路中的核心组件YAP/TAZ的作用机制。此外,研究发现在Wnt和Hippo信号之间的串扰是调节细胞命运的核心。这些机制可以解释力学微环境的信号是如何调节细胞行为和决定细胞命运的。本文重点对ECM和YAP/TAZ在决定细胞命运的过程中的作用机制展开系统综述。  相似文献   

12.
ABSTRACT

The preservation of tissue and organ architecture and function depends on tightly regulated interactions of cells with the extracellular matrix (ECM). These interactions are maintained in a dynamic equilibrium that balances intracellular, myosin-generated tension with extracellular resistance conferred by the mechanical properties of the extracellular matrix. Disturbances of this equilibrium can lead to the development of fibrotic lesions that are associated with a wide repertoire of high prevalence diseases including obstructive cardiovascular diseases, muscular dystrophy and cancer. Mechanotransduction is the process by which mechanical cues are converted into biochemical signals. At the core of mechanotransduction are sensory systems, which are frequently located at sites of cell-ECM and cell-cell contacts. As integrins (cell-ECM junctions) and cadherins (cell-cell contacts) have been extensively studied, we focus here on the properties of the discoidin domain receptor 1 (DDR1), a tyrosine kinase that mediates cell adhesion to collagen. DDR1 expression is positively associated with fibrotic lesions of heart, kidney, liver, lung and perivascular tissues. As the most common end-point of all fibrotic disorders is dysregulated collagen remodeling, we consider here the mechanical signaling functions of DDR1 in processing of fibrillar collagen that lead to tissue fibrosis.  相似文献   

13.
The interaction of heterologous tissues involves cell adhesion mediated by the extracellular matrix and its receptor integrins. The Drosophila wing disc is an ectodermal invagination that contacts specific tracheal branches at the basolateral cell surface. We show that an alpha subunit of laminin, encoded by wing blister (wb), is essential for the establishment of the interaction between the wing and trachea. During embryogenesis, wing disc cells present Wb at their basolateral surface and extend posteriorly, expanding their association to more posteriorly located tracheal branches. These migratory processes are impaired in the absence of the trachea, Wb, or integrins. Time-lapse and transmission electron microscopy analyses suggest that Wb facilitates integrin-dependent contact over a large surface and controls the cellular behavior of the wing cells, including their exploratory filopodial activity. Our data identify Wb laminin as an extracellular matrix ligand that is essential for integrin-dependent cellular migration in Drosophila.  相似文献   

14.
Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor–matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor–ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis.  相似文献   

15.
Cellular morphogenesis involves changes to cellular size and shape which in the case of walled cells implies the mechanical deformation of the extracellular matrix. So far, technical challenges have made quantitative mechanical measurements of this process at subcellular scale impossible. We used micro-indentation to investigate the dynamic changes in the cellular mechanical properties during the onset of spatially confined growth activities in plant cells. Pollen tubes are cellular protuberances that have a strictly unidirectional growth pattern. Micro-indentation of these cells revealed that the initial formation of a cylindrical protuberance is preceded by a local reduction in cellular stiffness. Similar cellular softening was observed before the onset of a rapid growth phase in cells with oscillating growth pattern. These findings provide the first quantitative cytomechanical data that confirm the important role of the mechanical properties of the cell wall for local cellular growth processes. They are consistent with a conceptual model that explains pollen tube oscillatory growth based on the relationship between turgor pressure and tensile resistance in the apical cell wall. To further confirm the significance of cell mechanics, we artificially manipulated the mechanical cell wall properties as well as the turgor pressure. We observed that these changes affected the oscillation profile and were able to induce oscillatory behavior in steadily growing tubes.  相似文献   

16.
Three-dimensional in vitro extracellular matrix models provide a physiological alternative to regular two-dimensional cell culture, though they lack the full diversity of molecular composition and physical properties of whole-animal systems. Cell-derived matrices are extracellular matrices that are the product of matrix secretion and assembly by cells cultured at high density in vitro. After the removal of the cells that produced the matrix, an assembled matrix scaffold is left that closely mimics native stromal fiber organization and molecular content. Cell-derived matrices have been shown to impart in vivo-like responses to cells cultured in these matrices. In this review, we focus on mechanisms through which the distinct molecular and topographical composition of cell-derived matrices directs cellular behavior, specifically through regulation of cell-matrix adhesions and subsequent contributions to the process of cell migration.  相似文献   

17.
Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation, which are continuously regulated by signals from the extracellular matrix (ECM) microenvironment. Therefore, the unique biological and physical characteristics of the ECM are important determinants of stem cell behavior. Although the acellular ECM of specific tissues and organs (such as the skin, heart, cartilage, and lung) can mimic the natural microenvironment required for stem cell differentiation, the lack of donor sources restricts their development. With the rapid development of adipose tissue engineering, decellularized adipose matrix (DAM) has attracted much attention due to its wide range of sources and good regeneration capacity. Protocols for DAM preparation involve various physical, chemical, and biological methods. Different combinations of these methods may have different impacts on the structure and composition of DAM, which in turn interfere with the growth and differentiation of stem cells. This is a narrative review about DAM. We summarize the methods for decellularizing and sterilizing adipose tissue, and the impact of these methods on the biological and physical properties of DAM. In addition, we also analyze the application of different forms of DAM with or without stem cells in tissue regeneration (such as adipose tissue), repair (such as wounds, cartilage, bone, and nerves), in vitro bionic systems, clinical trials, and other disease research.  相似文献   

18.
19.
Cells are constantly adapting to maintain their identity in response to the surrounding media's temporal and spatial heterogeneity. The plasma membrane, which participates in the transduction of external signals, plays a crucial role in this adaptation. Studies suggest that nano and micrometer areas with different fluidities at the plasma membrane change their distribution in response to external mechanical signals. However, investigations linking fluidity domains with mechanical stimuli, specifically matrix stiffness, are still in progress. This report tests the hypothesis that the stiffness of the extracellular matrix can modify the equilibrium of areas with different order in the plasma membrane, resulting in changes in overall membrane fluidity distribution. We studied the effect of matrix stiffness on the distribution of membrane lipid domains in NIH-3 T3 cells immersed in matrices of varying concentrations of collagen type I, for 24 or 72 h. The stiffness and viscoelastic properties of the collagen matrices were characterized by rheometry, fiber sizes were measured by Scanning Electron Microscopy (SEM) and the volume occupied by the fibers by second harmonic generation imaging (SHG). Membrane fluidity was measured using the fluorescent dye LAURDAN and spectral phasor analysis. The results demonstrate that an increase in collagen stiffness alters the distribution of membrane fluidity, leading to an increasing amount of the LAURDAN fraction with a high degree of packing. These findings suggest that changes in the equilibrium of fluidity domains could represent a versatile and refined component of the signal transduction mechanism for cells to respond to the highly heterogeneous matrix structural composition. Overall, this study sheds light on the importance of the plasma membrane's role in adapting to the extracellular matrix's mechanical cues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号