首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladino MJ  Hadley TJ  Ganetzky B 《Genetics》2002,161(3):1197-1208
Age-dependent neurodegeneration is a pathological condition found in many metazoans. Despite the biological and medical significance of this condition, the cellular and molecular mechanisms underlying neurodegeneration are poorly understood. The availability of a large collection of mutants exhibiting neurodegeneration will provide a valuable resource to elucidate these mechanisms. We have developed an effective screen for isolating neurodegeneration mutants in Drosophila. This screen is based on the observation that neuronal dysfunction, which leads to observable behavioral phenotypes, is often associated with neurodegeneration. Thus, we used a secondary histological screen to examine a collection of mutants originally isolated on the basis of conditional paralytic phenotypes. Using this strategy, we have identified 15 mutations affecting at least nine loci that cause gross neurodegenerative pathology. Here, we present a genetic, behavioral, and anatomical analysis of vacuous (vacu), the first of these mutants to be characterized, and an overview of other mutants isolated in the screen. vacu is a recessive mutation located cytologically at 85D-E that causes locomotor defects in both larvae and adults as well as neuronal hyperactivity. In addition, vacu exhibits extensive age-dependent neurodegeneration throughout the central nervous system. We also identified mutations in at least eight other loci that showed significant levels of neurodegeneration with a diverse array of neuropathological phenotypes. These results demonstrate the effectiveness of our screen in identifying mutations causing neurodegeneration. Further studies of vacu and the other neurodegenerative mutants isolated should ultimately help dissect the biochemical pathways leading to neurodegeneration.  相似文献   

2.
Glycosphingolipids are a polysaccharide chain between 1 and 40 carbohydrate residues long glycosidically linked to ceramide (a long-chain aliphatic amino-alcohol or sphingoid) that is embedded in the cell plasma membrane with the carbohydrate moiety on the outside. The sphingoid imparts rigidity to the membrane and the carbohydrate tails protect the cell surface and have functions in relation to cell adhesion, growth, regulation, differentiation, cell interaction, recognition and signalling. They provide adhesion sites for pathogens and change during oncogenic transformation. Ceramide is also a component of sphingomyelin. Glycosphingolipids are degraded by lysosomal hydrolysis. The sphingolipidoses are a series of diseases in which mutations affecting the enzymes catalysing the last 11 steps of this process causing abnormal compounds proximal to the metabolic block to accumulate intralysosomally. Thus, they are a sub-group of the lysosomal storage diseases. The degradation of sphingolipids containing three or less carbohydrate residues requires a sphingolipid activator protein and mutations affecting these proteins also cause abnormal glycosphingolipid storage. With one exception (Fabry disease, which is X linked) the sphingolipidoses are inherited autosomally. The phenotypic manifestations of the individual sphingolipidoses are variable although the more severe variants are usually the better known. They have generally been regarded as untreatable but notable therapeutic advances are being made by enzyme replacement therapy and regulating the rate of glycosphingolipid synthesis by inhibiting UDP-glucose-N-acylsphingosine D-glucosyl transferase (CerGlcT), which is the first reaction on the pathway of glycosphingolipid synthesis. The compounds used are N-alkylated iminosugars whose glucose and galactose stereochemistries inhibit CerGlcT. Prenatal and carrier state diagnosis, genetic counselling and the abortion of affected foetuses are reducing the incidence of some of the most severe sphingolipidoses in certain high-incidence populations.  相似文献   

3.
The recent discovery that familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6 are allelic disorders caused by different mutations in CACNA1A, a calcium-channel-encoding gene, adds to a growing list of channelopathies causing paroxysmal neurologic disturbance and progressive neurodegeneration. Calcium channelopathies in the central nervous system provide a model to study the important roles that calcium channels play in neuronal function.  相似文献   

4.
Ataxia-telangiectasia is a human syndrome resulting from mutations of the ATM protein kinase that is characterized by radiation sensitivity and neurodegeneration. Although neuroprotective, the molecular details of ATM function in the nervous system are uncertain. However, in the mouse, Atm is essential for ionizing radiation-induced apoptosis in select postmitotic populations of the developing nervous system. Atm-dependent apoptosis in the nervous system also requires p53, consistent with the well-established link of p53 as a major substrate of ATM. Furthermore, the proapoptotic effector Bax is also required for most, but not all, Atm-dependent apoptosis. Therefore, after DNA damage in the developing nervous system, Atm initiates a p53-dependent apoptotic cascade in differentiating neural cells. Together, these data suggest ATM-dependent apoptosis may be important for elimination of neural cells that have accumulated genomic damage during development, thus preventing dysfunction of these cells later in life.  相似文献   

5.
Neurodegenerative disorders affecting the central nervous system, such as Alzheimer's disease, Parkinson's disease, Huntington's chorea (HD) and amyotrophic lateral sclerosis are characterized by the loss of selected neuronal populations. Another striking feature shared by these diseases is the deposition of proteinaceous inclusion bodies in the brain, which may be intracytoplasmatic or intranuclear, or even extracellular. However, the density and prevalence of aggregates are not always directly related to neurodegeneration. Although some of these diseases are the result of mutations in known proteins, with HD a clear example, the expression and location of the affected protein do not explain the selective neurodegeneration. Therefore, other intrinsic mechanisms, characteristic of each neuronal population, might be involved in the neurodegenerative process. In this review we focus on several proposed mechanisms such as excitotoxicity, mitochondrial dysfunction and altered expression of trophic factors, which could account for the pathogenesis of HD.  相似文献   

6.
Hereditary optic neuropathies comprise a group of clinically and genetically heterogeneous disorders, which can be divided into 2 subgroups: isolated hereditary optic atrophies and optic neuropathies as part of complex disorders. In the first group of isolated hereditary optic neuropathies, optic nerve dysfunction is typically the only manifestation of the disease. This group comprises autosomal dominant, autosomal recessive and X-linked recessive optic atrophy, and the mitochondrial inherited Leber’s hereditary optic neuropathy (LHON). In the second group of complex disorders, various neurologic and other systemic abnormalities are regularly observed. The most frequent cause in this group are mitochondrial DNA (mtDNA) mutations, inherited peripheral neuropathies, Charcot–Marie–Tooth disorders (CMT2A2, CMTX5), hereditary sensory neuropathy type 3 (HSAN3), Friedreich ataxia, leukodystrophies, sphingolipidoses, ceroid-lipofuscinoses, and neurodegeneration with brain iron accumulation (NBIA). In the present article, the clinical phenotypes and underlying genetic predispositions are described.  相似文献   

7.
Research in the last 10 years has revealed that the development of neurodegeneration is a multistep process during which one or few specific mutant protein species of altered conformation initiate aberrant protein-protein interactions resulting in aggregates forming plaques. This review focuses on the heteroassociations of the mutant proteins with subcellular structures, such as cytoskeleton, cell membranes or with glycolytic enzymes, which may be crucial in the initiation of neurodegeneration such as in Huntington's disease or Alzheimer's disease. Triosephosphate isomerase enzymopathy is a unique glycolytic enzyme deficiency coupled with neurodegeneration. We present data on the mutation induced misfolding process, which likely plays a crucial role in the enhanced associations of the enzyme with the truncated fragment of the isomerase, with the red cell membrane or with the microtubular network. On the basis of our recent clinical and experimental results obtained with two compound heterozygote Hungarian brothers it became obvious that the mutations alone are not sufficient to explain the development of the neurological sympthomes. This underscores the fact that the mutations alone are not enough for the development of the clinical phenotype of a disease.  相似文献   

8.
9.
Recently, mutations in the progranulin (PGRN) gene were found to cause familial and apparently sporadic frontotemporal lobe dementia (FTLD). Moreover, missense changes in PGRN were identified in patients with motor neuron degeneration, a condition that is related to FTLD. Most mutations identified in patients with FTLD until now have been null mutations. However, it remains unknown whether PGRN protein levels are reduced in the central nervous system from such patients. The effects of PGRN on neurons also remain to be established. We report that PGRN levels are reduced in the cerebrospinal fluid from FTLD patients carrying a PGRN mutation. We observe that PGRN and GRN E (one of the proteolytic fragments of PGRN) promote neuronal survival and enhance neurite outgrowth in cultured neurons. These results demonstrate that PGRN/GRN is a neurotrophic factor with activities that may be involved in the development of the nervous system and in neurodegeneration.  相似文献   

10.
Attractin (ATRN) and Attractin-like 1 (ATRNL1) are highly similar type I transmembrane proteins. Atrn null mutant mice have a pleiotropic phenotype including dark fur, juvenile-onset spongiform neurodegeneration, hypomyelination, tremor, and reduced body weight and adiposity, implicating ATRN in numerous biological processes. Bioinformatic analysis indicated that Atrn and Atrnl1 arose from a common ancestral gene early in vertebrate evolution. To investigate the genetics of the ATRN system and explore potential redundancy between Atrn and Atrnl1, we generated and characterized Atrnl1 loss- and gain-of-function mutations in mice. Atrnl1 mutant mice were grossly normal with no alterations of pigmentation, central nervous system pathology or body weight. Atrn null mutant mice carrying a beta-actin promoter-driven Atrnl1 transgene had normal, agouti-banded hairs and significantly delayed onset of spongiform neurodegeneration, indicating that over-expression of ATRNL1 compensates for loss of ATRN. Thus, the two genes are redundant from the perspective of gain-of-function but not loss-of-function mutations.  相似文献   

11.
Neuronal loss and axonal degeneration are important pathological features of many neurodegenerative diseases. The molecular mechanisms underlying the majority of axonal degeneration conditions remain unknown. To better understand axonal degeneration, we studied a mouse mutant wabbler-lethal (wl). Wabbler-lethal (wl) mutant mice develop progressive ataxia with pronounced neurodegeneration in the central and peripheral nervous system. Previous studies have led to a debate as to whether myelinopathy or axonopathy is the primary cause of neurodegeneration observed in wl mice. Here we provide clear evidence that wabbler-lethal mutants develop an axonopathy, and that this axonopathy is modulated by Wld(s) and Bax mutations. In addition, we have identified the gene harboring the disease-causing mutations as Atp8a2. We studied three wl alleles and found that all result from mutations in the Atp8a2 gene. Our analysis shows that ATP8A2 possesses phosphatidylserine translocase activity and is involved in localization of phosphatidylserine to the inner leaflet of the plasma membrane. Atp8a2 is widely expressed in the brain, spinal cord, and retina. We assessed two of the mutant alleles of Atp8a2 and found they are both nonfunctional for the phosphatidylserine translocase activity. Thus, our data demonstrate for the first time that mutation of a mammalian phosphatidylserine translocase causes axon degeneration and neurodegenerative disease.  相似文献   

12.
13.
Oligodendrocyte is a highly specialized glial cell type in the vertebrate central nervous system, which guarantees the long-distance transmission of action potential by producing myelin sheath wrapping adjacent axons. Disrupted myelin and oligodendrocytes are hallmarks of some devastating neurological diseases, such as multiple sclerosis, although their contribution to neurodegeneration in a given disease is still controversial. However, accumulating evidence from clinical studies and genetic animal models implicates oligodendrocyte dysfunction as one of major events in the processes of initiation and progression of neurodegeneration. In this article, we will review recent progress in understanding non-traditional function of oligodendrocytes in neuronal support and protection independent of myelin sheath and its possible contribution to neurodegeneration. Oligodendrocytes play a pivotal role in neurodegenerative diseases among which special emphasis is given to multiple system atrophy and Alzheimer’s disease in this review.  相似文献   

14.
Increased proteolytic activity is a hallmark of several pathological processes, including neurodegeneration. Increased expression and activity of cathepsins, lysosomal cysteine proteases, during degeneration of the central nervous system is frequently reported. Recent studies reveal that a disturbed balance of their enzymatic activities is the first insult in brain aging and age-related diseases. Leakage of cathepsins from lysosomes, due to their membrane permeability, and activation of pro-apoptotic factors additionally contribute to neurodegeneration. Furthermore, in inflammation-induced neurodegeneration the cathepsins expressed in activated microglia play a pivotal role in neuronal death. The proteolytic activity of cysteine cathepsins is controlled by endogenous protein inhibitors—the cystatins—which evidently fail to perform their function in neurodegenerative processes. Exogenous synthetic inhibitors, which may augment their inhibitory potential, are considered as possible therapeutic tools for the treatment of neurological disorders.  相似文献   

15.
The neural microtubule-associated protein Tau binds directly to microtubules and regulates their dynamic behavior. In addition to being required for normal development, maintenance, and function of the nervous system, Tau is associated with several neurodegenerative diseases, including Alzheimer disease. One group of neurodegenerative dementias known as FTDP-17 (fronto-temporal dementia with Parkinsonism linked to chromosome 17) is directly linked genetically to mutations in the tau gene, demonstrating that Tau misfunction can cause neuronal cell death and dementia. These mutations result either in amino acid substitutions in Tau or in altered Tau mRNA splicing that skews the expression ratio of wild-type 3-repeat and 4-repeat Tau isoforms. Because wild-type Tau regulates microtubule dynamics, one possible mechanism underlying Tau-mediated neurodegeneration is aberrant regulation of microtubule behavior. In this study, we microinjected normal and mutated Tau protein into cultured cells expressing fluorescent tubulin and measured the effects on the dynamic instability of individual microtubules. We found that the FTDP-17 amino acid substitutions G272V (in both 3-repeat and 4-repeat Tau contexts), DeltaK280, and P301L all exhibited markedly reduced abilities to regulate dynamic instability relative to wild-type Tau. In contrast, the FTDP-17 R406W mutation (which maps in a regulatory region outside the microtubule binding domain of Tau) did not significantly alter the ability of 3-repeat or 4-repeat Tau to regulate microtubule dynamics. Overall, these data are consistent with a loss-of-function model in which both amino acid substitutions and altered mRNA splicing in Tau lead to neurodegeneration by diminishing the ability of Tau to properly regulate microtubule dynamics.  相似文献   

16.
Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders.  相似文献   

17.
Regulation of tau isoform expression and dementia   总被引:8,自引:0,他引:8  
In the central nervous system (CNS), aberrant changes in tau mRNA splicing and consequently in protein isoform ratios cause abnormal aggregation of tau and neurodegeneration. Pathological tau causes neuronal loss in Alzheimer's disease (AD) and a diverse group of disorders called the frontotemporal dementias (FTD), which are two of the most common forms of dementia and afflict more than 10% of the elderly population. Autosomal dominant mutations in the tau gene cause frontotemporal dementia with parkinsonism-chromosome 17 type (FTDP-17). Just over half the mutations affect tau protein function and decrease its affinity for microtubules (MTs) or increase self-aggregation. The remaining mutations occur within exon 10 (E10) and intron 10 sequences and alter complex regulation of E10 splicing by multiple mechanisms. FTDP-17 splicing mutations disturb the normally balanced levels of distinct protein isoforms that result in altered biochemical and structural properties of tau. In addition to FTDP-17, altered tau isoform levels are also pathogenically associated with other FTD disorders such as progressive supranuclear palsy (PSP), corticobasal degeneration and Pick's disease; however, the mechanisms remain undefined and mutations in tau have not been detected. FTDP-17 highlights the association between splicing mutations and the pronounced variability in pathology as well as phenotype that is characteristic of inherited disorders.  相似文献   

18.
Nacharaju P  Lewis J  Easson C  Yen S  Hackett J  Hutton M  Yen SH 《FEBS letters》1999,447(2-3):195-199
Tau is the major component of the neurofibrillar tangles that are a pathological hallmark of Alzheimers' disease. The identification of missense and splicing mutations in tau associated with the inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 demonstrated that tau dysfunction can cause neurodegeneration. However, the mechanism by which tau dysfunction leads to neurodegeneration remains uncertain. Here, we present evidence that frontotemporal dementia and Parkinsonism linked to chromosome 17 missense mutations, P301L, V337M and R406W, cause an accelerated aggregation of tau into filaments. These results suggest one mechanism by which these mutations can cause neurodegeneration and frontotemporal dementia and Parkinsonism linked to chromosome 17.  相似文献   

19.
Gangliosides are sialic acid containing glycosphingolipids that are present on all plasma cell membranes. Although they represent the major sialoconjugates in the central nervous system, their precise functions remain obscure. We have generated a series of knockout mice with gene disruptions in the ganglioside biosynthetic pathway. Individually these mice lack subsets of gangliosides allowing investigations into their specific functions. By breeding mice to contain multiple mutations in the biosynthetic pathway we have now produced mice without neuronal gangliosides. These mice display an extremely severe phenotype and neuronal pathology highlighting the essential function of gangliosides in the central nervous system.  相似文献   

20.
Prion diseases are inevitably fatal neurodegenerative conditions which affect humans and a wide variety of animals. Unlike other protein aggregation diseases such as Alzheimer's, Parkinson's, and polyglutamine repeat diseases, prion diseases are unique in that they are transmissible. Therefore, prion diseases are also called transmissible spongiform encephalopathies. A number of prion diseases are caused by peripheral uptake of the infectious agent. In order to reach their target, the central nervous system, prions enter their host, accumulate and replicate in lymphoid organs, and eventually spread to the central nervous system via peripheral nerves. Once the agent has reached the central nervous system, disease progression is rapid, resulting in neurodegeneration and death. In this article, we review the state of knowledge on the routes of neuroinvasion used by the infectious agent in order to gain access to the central nervous system upon entry into extracerebral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号