首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this study a microRNA (miRNA) signature was identified in a gemcitabine resistant pancreatic ductal adenocarcinoma (PDAC) cell line model (BxPC3-GZR) and this signature was further examined in advanced PDAC tumor specimens from The Cancer Genome Atlas (TCGA) database. BxPC3-GZR showed a mesenchymal phenotype, expressed high levels of CD44 and showed a highly significant deregulation of 17 miRNAs. Based on relevance to cancer, a seven-miRNA signature (miR-100, miR-125b, miR-155, miR-21, miR-205, miR-27b and miR-455-3p) was selected for further studies. A strong correlation was observed for six of the seven miRNAs in 43 advanced tumor specimens compared to normal pancreas tissue. To assess the functional relevance we initially focused on miRNA-125b, which is over-expressed in both the BxPC3-GZR model and advanced PDAC tumor specimens. Knockdown of miRNA-125b in BxPC3-GZR and Panc-1 cells caused a partial reversal of the mesenchymal phenotype and enhanced response to gemcitabine. Moreover, RNA-seq data from each of 40 advanced PDAC tumor specimens from the TCGA data base indicate a negative correlation between expression of miRNA-125b and five of six potential target genes (BAP1, BBC3, NEU1, BCL2, STARD13). Thus far, two of these target genes, BBC3 and NEU1, that are tumor suppressor genes but not yet studied in PDAC, appear to be functional targets of miR-125b since knockdown of miR125b caused their up regulation. These miRNAs and their molecular targets may serve as targets to enhance sensitivity to chemotherapy and reduce metastatic spread.  相似文献   

3.
ObjectiveTo explore the expression differences of miRNA-21, miRNA-31 and miRNA-let7 between lung cancer patient and healthy people, thereby providing reference for early diagnosis of lung cancer.MethodReal-time PCR was employed to determine the expression difference between lung cancer patients (50 cases) and healthy people (24 cases). The clinical data of lung cancer patients were analyzed to explore the correlation between clinicopathological characteristics and expression level of miRNA-21, miRNA-31, miRNA-let7.ResultsThe relative expression levels of miRNA-21 and miRNA-31 in lung cancer group were obviously higher than those in healthy control group, and the relative expression level of miRNA-let7 in lung cancer group was slightly higher than that in healthy control group. Lung cancer patients with lymph node metastasis had higher expression level than those without lymph node metastasis. The ROC curve showed that the three miRNAs had clinical diagnosis efficiency for lung cancer, and the combined detection of the three miRNAs were more efficient in diagnosing lung cancer. Survival curve analysis suggested that the median survival times of patients in the miRNA-21 and miRNA-31 high expression groups were shorter than those in the low expression groups, and the median survival time of patients in miRNA-let7 high expression group was longer than that in the low expression group.ConclusionPlasma miRNA-21, miRNA-31 and miRNA-let7 may be diagnostic marker for lung cancer.  相似文献   

4.
BackgroundDNA topoisomerase (Topo) inhibition plays key role in breast cancer treatment. Stephania hainanensis H. S. Lo et Y. Tsoong (S. hainanensis), a Li nationality plant that has abundant aporphine alkaloids, can inhibit Topo.PurposeTo identify a dual Topo inhibitor, a deep and systematic study of active aporphine alkaloids in S. hainanensis and their mechanisms of inhibiting breast cancer proliferation and Topo activity are essential.Study designThis study aimed to assess the anti-breast cancer and Topo inhibitory activities of oxocrebanine and explore the underlying mechanisms.MethodsThe growth inhibitory activities of 12 compounds in S. hainanensis were screened by MTT assay in MCF-7, SGC-7901, HepG-2 cells, and compared with the effects on human normal mammary epithelial MCF-10A cells as non cancer control cells. The Topo inhibitory activity was assessed by DNA relaxation and unwinding assays, kDNA decatenation assay and western blot. Cell cycle and autophagy analyses were carried out with flow cytometry and staining. Acridine orange staining and α-tubulin morphology were observed by fluorescence microscopy. Western blot was used to examine microtubule assembly dynamics and the expression levels of key proteins associated with DNA damage, autophagy and mitotic arrest.ResultsOxocrebanine was the anti-breast cancer active alkaloid in S. hainanensis. It exhibited the best inhibitory effect on MCF-7 cells with an IC50 of 16.66 μmol/l, and had only weak effect on the proliferation of MCF-10A cells. Oxocrebanine inhibited Topo I and II α in a cell-free system and in MCF-7 cells. The DNA unwinding assay suggested that oxocrebanine intercalated with DNA as a catalytic inhibitor. Oxocrebanine regulated the levels of Topo I and IIα and DNA damage-related proteins. Oxocrebanine led to the mitotic arrest, and these effects occurred through both p53-dependent and p53-independent pathways. Oxocrebanine induced autophagy, abnormal α-tubulin morphology and stimulated enhanced microtubule dynamics.ConclusionOxocrebanine was the anti-breast cancer active aporphine alkaloid in S. hainanensis. Oxocrebanine was a Topo I/IIα dual inhibitor, catalytic inhibitor and DNA intercalator. Oxocrebanine caused DNA damage, autophagy, and mitotic arrest in MCF-7 cells. Oxocrebanine also disrupted tubulin polymerization. Accordingly, oxocrebanine held a great potential for development as a novel dual Topo inhibitor for effective breast cancer treatment.  相似文献   

5.
BackgroundMetastasis is the most common lethal cause of breast cancer-related death. Recent studies have implied that autophagy is closely implicated in cancer metastasis. Therefore, it is of great significance to explore autophagy-related molecular targets involved in breast cancer metastasis and to develop therapeutic drugs.PurposeThis study was designed to investigate the anti-metastatic effects and autophagy regulatory mechanisms of Aiduqing (ADQ) formula on breast cancer.Study Design/MethodsMultiple cellular and molecular experiments were conducted to investigate the inhibitory effects of ADQ formula on autophagy and metastasis of breast cancer cells in vitro. Meanwhile, autophagic activator/inhibitor as well as CXCL1 overexpression or interference plasmids were used to investigate the underlying mechanisms of ADQ formula in modulating autophagy-mediated metastasis. Furthermore, the zebrafish xenotransplantation model and mouse xenografts were applied to validate the inhibitory effect of ADQ formula on autophagy-mediated metastasis in breast cancer in vivo.ResultsADQ formula significantly inhibited the proliferation, migration, invasion and autophagy but induced apoptosis of high-metastatic breast cancer cells in vitro. Similar results were also observed in starvation-induced breast cancer cells which exhibited elevated metastatic ability and autophagy activity. Mechanism investigations further approved that either CXCL1 overexpression or autophagic activator rapamycin can significantly abrogated the anti-metastatic effects of ADQ formula, suggesting that CXCL1-mediated autophagy may be the crucial pathway of ADQ formula in suppressing breast cancer metastasis. More importantly, ADQ formula suppressed breast cancer growth, autophagy, and metastasis in both the zebrafish xenotransplantation model and the mouse xenografts.ConclusionOur study not only revealed the novel function of CXCL1 in mediating autophagy-mediated metastasis but also suggested ADQ formula as a candidate drug for the treatment of metastatic breast cancer.  相似文献   

6.
Helicobacter pylori (H. pylori) is a Gram-negative bacterium and causative agent of gastric cancer. H. pylori induce defective autophagy or inhibit it by means of CagA and vacuolating cytotoxin A (VacA) toxins leading to the gastric cancer induction. Impaired or defective autophagy leads to the accumulation of cytotoxic materials, such as ROS and P62 that lead to increased mutations in the DNA, genome instability, and risk of cancer formation. H. pylori CagA may inhibit autophagy through the c-Met-PI3k/Akt-mTOR signaling pathway. However, VacA induces autophagy by some signaling pathways. In the gastric epithelial cells, VacA is a necessary and sufficient factor for the creation of autophagy. While CagA is a negative regulator of this phenomenon, the elimination of this gene from H. pylori has increased autophagy and the production of inflammatory cytokines is reduced. In gastrointestinal cancers, some of the microRNAs (miRNAs) act as tumor suppressors and some other are oncogenes by regulating various genes expression. H. pylori can also modify autophagy through a mechanism that includes the function of miRNAs. In autophagy, oncogenic miRNAs inhibit activation of some tumor suppressor signaling pathways (e.g., ULK1 complex, Beclin-1 function, and Atg4 messaging), whereas tumor suppressor miRNAs can block the activation of oncogenic signaling pathways. For instance, Beclin-1 is negatively regulated by miRNA-376b (oncogenic miRNA) and miRNA-30a (tumor suppressor miRNA). Similarly, Atg4 by miRNA-376b (oncogenic miRNA) and miRNA-101 (tumor suppressor miRNA). So, this apparent paradox can be explained as that both Beclin-1 and Atg4 play different roles in a particular cell or tissue.  相似文献   

7.
BackgroundEvidence shows that individuals who are under long-term exposure to environmental PM2.5 are at increased risk of lung cancer. Various laboratory experiments also suggest several mechanistic links between PM2.5 exposure and lung carcinogenesis. However, a long non-coding RNA (lncRNA) mediated pathogenic change after PM2.5 exposure and its potential roles in tumorigenesis and disease progression have not been reported.MethodsCytotoxicity induced by PM2.5 was assessed by using scanning electron microscopy and transmission electron microscopy. ROS generation, autophagy, and metastasis induced by PM2.5 were detected by using comprehensive approaches. Expression of lncRNA-loc146880 and lc3b (autophagy marker) in A549 cells, lung tissue and serum were determined by RT-PCR and Western blotting.ResultsPM2.5 could be internalized into lung cancer cells, resulting in marked increases in ROS levels and autophagy. ROS may be responsible for increased expression of loc146880 which further up-regulates autophagy. Both loc146880 and autophagy could promote lung tumor cell migration, invasion and EMT. In addition, a positive correlation was observed between loc146880 expression and lc3b levels in tumor tissues and serum of lung cancer patients.ConclusionTaken together, our data suggest that PM2.5 exposure induces ROS, which activates loc146880 expression. The lncRNA, in turn, up-regulates autophagy and promotes the malignant behaviors of lung cancer cells.General significanceThe results show the toxicological effects of PM2.5 in lung tumor progression and metastasis.  相似文献   

8.
A series of novel 3-aryl-1-arylmethyl-1H-pyrazole-5-carbohydrazide N-β-glycoside derivatives was synthesized by the reaction of substituted 1H-pyrazole-5-carbohydrazide with d-sugar and the effects of all the compounds on A549 cell growth were investigated. The results showed that all compounds had inhibitory effects on the growth of A549 lung cancer cells and compound 3d possessed the highest growth inhibitory effect and induced autophagy of A549 lung cancer cells.  相似文献   

9.
The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC.  相似文献   

10.
Micro RNAs (miRNAs) are important regulators involved in various physical and pathological processes, including cancer. The miRNA-302 family has been documented as playing a critical role in carcinogenesis. In this study, we investigated the role of miRNA-302a in colon cancer. MiRNA-302a expression was detected in 44 colon cancer tissues and 10 normal colon tissues, and their clinicopathological significance was analyzed. Cell proliferation and cell cycle analysis were performed on colon cancer cells that stably expressed miRNA-302a. The target gene of miRNA-302a and the downstream pathway were further investigated. Compared with normal colon tissues, miRNA-302a expression was downregulated in colon cancer tissues. Overexpression of miRNA-302a induced G1/S cell cycle arrest in colon cancer cells, and suppressed colon cancer cell proliferation both in vitro and in vivo. Furthermore, miRNA-302a inhibited AKT expression by directly binding to its 3′ untranslated region, resulting in subsequent alterations of the AKT-GSK3β-cyclin D1 pathway. These results reveal miRNA-302a as a tumor suppressor in colon cancer, suggesting that miRNA-302a may be used as a potential target for therapeutic intervention in colon cancer.  相似文献   

11.
AS Patel  L Lin  A Geyer  JA Haspel  CH An  J Cao  IO Rosas  D Morse 《PloS one》2012,7(7):e41394

Background

Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis.

Methods

Human lung tissues from patients with IPF were analyzed for autophagy markers and modulating proteins using western blotting, confocal microscopy and transmission electron microscopy. To study the effects of TGF-β1 on autophagy, human lung fibroblasts were monitored by fluorescence microscopy and western blotting. In vivo experiments were done using the bleomycin-induced fibrosis mouse model.

Results

Lung tissues from IPF patients demonstrate evidence of decreased autophagic activity as assessed by LC3, p62 protein expression and immunofluorescence, and numbers of autophagosomes. TGF-β1 inhibits autophagy in fibroblasts in vitro at least in part via activation of mTORC1; expression of TIGAR is also increased in response to TGF-β1. In the bleomycin model of pulmonary fibrosis, rapamycin treatment is antifibrotic, and rapamycin also decreases expression of á-smooth muscle actin and fibronectin by fibroblasts in vitro. Inhibition of key regulators of autophagy, LC3 and beclin-1, leads to the opposite effect on fibroblast expression of á-smooth muscle actin and fibronectin.

Conclusion

Autophagy is not induced in pulmonary fibrosis despite activation of pathways known to promote autophagy. Impairment of autophagy by TGF-β1 may represent a mechanism for the promotion of fibrogenesis in IPF.  相似文献   

12.
BackgroundEpidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and anaplastic lymphoma kinase (ALK) inhibitors have dramatically changed the strategy of medical treatment of lung cancer. Patients should be screened for the presence of the EGFR mutation or echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion gene prior to chemotherapy to predict their clinical response. The succinate dehydrogenase inhibition (SDI) test and collagen gel droplet embedded culture drug sensitivity test (CD-DST) are established in vitro drug sensitivity tests, which may predict the sensitivity of patients to cytotoxic anticancer drugs. We applied in vitro drug sensitivity tests for cyclopedic prediction of clinical responses to different molecular targeting drugs.MethodsThe growth inhibitory effects of erlotinib and crizotinib were confirmed for lung cancer cell lines using SDI and CD-DST. The sensitivity of 35 cases of surgically resected lung cancer to erlotinib was examined using SDI or CD-DST, and compared with EGFR mutation status.ResultsHCC827 (Exon19: E746-A750 del) and H3122 (EML4-ALK) cells were inhibited by lower concentrations of erlotinib and crizotinib, respectively than A549, H460, and H1975 (L858R+T790M) cells were. The viability of the surgically resected lung cancer was 60.0 ± 9.8 and 86.8 ± 13.9% in EGFR-mutants vs. wild types in the SDI (p = 0.0003). The cell viability was 33.5 ± 21.2 and 79.0 ± 18.6% in EGFR mutants vs. wild-type cases (p = 0.026) in CD-DST.ConclusionsIn vitro drug sensitivity evaluated by either SDI or CD-DST correlated with EGFR gene status. Therefore, SDI and CD-DST may be useful predictors of potential clinical responses to the molecular anticancer drugs, cyclopedically.  相似文献   

13.
ObjectivesSenescence, characterized by permanent cycle arrest, plays an important role in diabetic nephropathy (DN). However, the mechanism of renal senescence is still unclear, and the treatment targeting it remains to be further explored.Materials and MethodsThe DN mice were induced by HFD and STZ, and 3 types of renal cells were treated with high glucose (HG) to establish in vitro model. Senescence‐related and autophagy‐related markers were detected by qRT‐PCR and Western blot. Further, autophagy inhibitors and co‐immunoprecipitation were used to clarify the mechanism of CO. Additionally, the specific relationship between autophagy and senescence was explored by immunofluorescence triple co‐localization and ELISA.ResultsWe unravelled that senescence occurred in vivo and in vitro, which could be reversed by CO. Mechanistically, we demonstrated that CO inhibited the dysfunction of autophagy in DN mice partly through dissociating Beclin‐1‐Bcl‐2 complex. Further results showed that autophagy inhibitors blocked the improvement of CO on senescence. In addition, the data revealed that autophagy regulated the degradation of senescence‐related secretory phenotype (SASP) including Il‐1β, Il‐6, Tgf‐β and Vegf.ConclusionsThese results suggested that CO protects DN mice from renal senescence and function loss via improving autophagy partly mediated by dissociating Beclin‐1‐Bcl‐2 complex, which is possibly ascribed to the degradation of SASP. These findings bring new ideas for the prevention and treatment of DN and the regulation of senescence.  相似文献   

14.
Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.  相似文献   

15.
BackgroundMyricetin (MYR) is a polyhydroxy flavone originally isolated from Myrica rubra, and is widely distributed in a variety of medicinal plants and delicious food. MYR has been proven to have inhibitory effects against various types of cancer. However, the exact role of MYR in lymphoma development is still unclear.MethodsIn vitro, the MTT assay was performed to evaluate the activity of human diffuse large B lymphoma cell TMD-8 and other tumor cells. Homogeneous time-resolved fluorescence (HTRF) and molecular docking were used to detect the target of MYR inhibiting TMD-8 cells. In addition, flow cytometry, Annexin V-FITC/PI assays, Hoechst 33258, and mondansylcadaverine (MDC) fluorescent standing were used to detect the cell cycle, apoptosis, and autophagy, respectively. Moreover, Western blot analysis was conducted to analyze related signaling pathways. In TMD-8 cell xenotransplanted mice, immunohistochemistry, histopathology, and blood biochemical tests were used to evaluate the effectiveness and safety of oral administration of MYR.ResultsHere, we found that MYR is more sensitive to TMD-8 cells than other tumor cells by targeting bruton tyrosine kinase (BTK). BTK is an attractive target for the treatment of B-cell malignancies. The HTRF assay showed that MYR inhibited BTK kinase with an IC50 of 1.82 μM. Furthermore, the HTRF assay and Western blot analysis demonstrated that MYR could bind to key residues (Ala478, Leu408, Thr474) in the BTK active pocket, inhibit the autophosphorylation on tyrosine 223, and block BTK/ERK and BTK/AKT signal transduction cascades (including downstream substrates GSK-3β, IKK, STAT3, and NF-κb). The results of cell cycle, apoptosis, and autophagy showed that MYR could induce G1/G0 cycle arrest by regulating cyclinB1/D1 expression, induce apoptosis by increasing the Bax/Bcl-2 ratio, and trigger autophagy by inhibiting mTOR activation. In vivo, oral administration of MYR significantly inhibited the growth of TMD-8 xenograft tumora without toxic side effects. Furthermore, Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis showed that MYR could inhibit proliferation and induce apoptosis of tissue lymphoma cells.ConclusionTaken together, MYR is an oral available natural BTK inhibitor that effectively inhibits the growth of lymphoma TMD-8 cells both in vitro and in vivo. In addition, our findings support that the use of MYR is a novel and promising therapeutic strategy for the treatment of lymphoma.  相似文献   

16.
BackgroundHypoxia and HIF-1α are important regulators of tumour growth and angiogenesis and could be attractive targets for cancer therapeutics. Decursin is an active compound extracted from the roots of Angelica gigas and has been shown to have potent anti-cancer and anti-angiogenic activities. However, whether decursin regulates HIF-1α activity and immune responses under hypoxic conditions is not yet understood.PurposeThe aim of this study was to identify whether decursin exhibits anti-cancer activity by targeting HIF-1α.Study designWe investigated whether decursin regulates HIF-1α protein stability and increases its degradation. In addition, we determined if decursin increases immune responses in tumour microenvironment to identify its hypoxia-associated anti-cancer activities.Materials and methodsWe performed the hypoxia-responsive element promoter–reporter assay, Western blot analysis, immune-fluorescence assay, semi-quantitative RT-PCR and ELISA for VEGF secretion, CCK-8 assay for cell proliferation, TUNEL assay for apoptosis and invasion assay in A549 human lung cancer or HCT116 human colon cancer cells. In vivo Lewis lung carcinoma (LLC) allograft mouse model was used to check tumour growth and immune responses in tumour microenvironment by immunohistochemistry analysis.ResultsWe observed that decursin inhibited HIF-1 activation under hypoxia by down-regulating the protein level of its subunit HIF-1α. It increased oxygen-dependant hydroxylation and ubiquitination of HIF-1α to promote HIF-1α degradation. Decursin also decreased mRNA expression of HIF-1α target genes. Decursin suppressed cancer cell proliferation, induced apoptosis and inhibited cancer cell invasion under hypoxia in cancer cells. In the allograft mouse tumour model, decursin reduced the hypoxic area and HIF-1α and PD-L1 expression. Infiltrating T cells (CD3+), helper T cells (CD4+) and cytotoxic (CD8+) T cells were accumulated, but regulatory T cells (Foxp3) and myeloid-derived suppressor cell-mediated immune suppressors (Arg1) were attenuated by decursin.ConclusionOur results suggest that decursin is a novel HIF-1α inhibitor that functions by promoting its proteasomal degradation and that it also helps improve T cell activation in tumour microenvironment; these findings provide new explanations about its anti-cancer and anti-angiogenic activity mechanisms.  相似文献   

17.
Xinqun Li  Yang Lu  Tianhong Pan  Zhen Fan 《Autophagy》2010,6(8):1066-1077
Cetuximab is an epidermal growth factor receptor (EGFR)-blocking antibody that is approved to treat several types of solid cancers in patients. We recently showed that cetuximab can induce autophagy in cancer cells by both inhibiting the class I phosphatidylinositol 3-kinase (PtdIns3K)/Akt/mammalian target of rapamycin (mTOR) pathway and activating the class III PtdIns3K (hVps34)/beclin 1 pathway. In the current study, we investigated the relationship between cetuximab-induced autophagy and apoptosis and the biological roles of autophagy in cetuximab-mediated cancer therapy. We found that cetuximab induced autophagy in cancer cells that show strong or weak induction of apoptosis after cetuximab treatment but not in those that show only cytostatic growth inhibition. Inhibition of cetuximab-induced apoptosis by a caspase inhibitor prevented the induction of autophagy. Conversely, inhibition of cetuximab-induced autophagy by silencing the expression of autophagy-related genes (Atg) or treating the cancer cells with lysosomal inhibitors enhanced the cetuximab-induced apoptosis, suggesting that autophagy was a protective cellular response to cetuximab treatment. On the other hand, cotreatment of cancer cells with cetuximab and the mTOR inhibitor rapamycin resulted in an Atg-dependent and lysosomal inhibition-sensitive death of cancer cells that show only growth inhibition or weak apoptosis after cetuximab treatment, indicating that cell death may be achieved by activating the autophagy pathway in these cells. Together, our findings may guide the development of novel clinical strategies for sensitizing cancer cells to EGFR-targeted therapy.Key words: EGFR, cetuximab, autophagy, apoptosis, cancer therapy  相似文献   

18.
BackgroundLung cancer is the leading cause of cancer-related death worldwide. In addition to surgical resection, which is considered first-line treatment at early stages of the disease, chemotherapy and radiation are widely used when the disease is advanced. Of multiple responses that may occur in the tumor cells in response to cancer therapy, the functional importance of autophagy remains equivocal; this is likely to restrict current efforts to sensitize this malignancy to chemotherapy and/or radiation by pharmacological interference with the autophagic response.Scope of reviewIn this review, we attempt to summarize the current state of knowledge based on studies that evaluated the function of autophagy in non-small cell lung cancer (NSCLC) cells in response to radiation and the most commonly used chemotherapeutic agents.Major conclusionsIn addition to the expected prosurvival function of autophagy, where autophagy inhibition enhances the response to therapy, autophagy appears also to have a “non-cytoprotective” function, where autophagy blockade does not affect cell viability, clonogenicity or tumor volume in response to therapy. In other cases, autophagy may actually mediate drug action via expression of its cytotoxic function.General significanceThese observations emphasize the complexity of autophagy function when examined in different tumor cell lines and in response to different chemotherapeutic agents. A more in-depth understanding of the conditions that promote the unique functions of autophagy is required in order to translate preclinical findings of autophagy inhibition to the clinic for the purpose of improving patient response to chemotherapy and radiation.  相似文献   

19.
TNF receptor-associated factor 6 (TRAF6)-BECN1 signaling axis plays a pivotal role in autophagy induction through ubiquitination of BECN1, thereby inducing lung cancer migration and invasion in response to toll-like receptor 4 (TLR4) stimulation. Herein, we provide novel molecular and cellular mechanisms involved in the negative effect of ubiquitin-specific peptidase 15 (USP15) on lung cancer progression. Clinical data of the TCGA and primary non-small cell lung cancer (NSCLC) patients (n = 41) revealed that the expression of USP15 was significantly downregulated in lung cancer patients. Importantly, USP15-knockout (USP15KO) A549 and USP15KO H1299 lung cancer cells generated with CRISPR-Cas9 gene-editing technology showed increases in cancer migration and invasion with enhanced autophagy induction in response to TLR4 stimulation. In addition, biochemical studies revealed that USP15 interacted with BECN1, but not with TRAF6, and induced deubiquitination of BECN1, thereby attenuating autophagy induction. Notably, in primary NSCLC patients (n = 4) with low expression of USP15, 10 genes (CCNE1, MMP9, SFN, UBE2C, CCR2, FAM83A, ETV4, MYO7A, MMP11, and GSDMB) known to promote lung cancer progression were significantly upregulated, whereas 10 tumor suppressor genes (FMO2, ZBTB16, FCN3, TCF21, SFTPA1B, HPGD, SOSTDC1, TMEM100, GDF10, and WIF1) were downregulated, providing clinical relevance of the functional role of USP15 in lung cancer progression. Taken together, our data demonstrate that USP15 can negatively regulate the TRAF6-BECN1 signaling axis for autophagy induction. Thus, USP15 is implicated in lung cancer progression.Subject terms: Non-small-cell lung cancer, Cell invasion  相似文献   

20.
《Autophagy》2013,9(12):2346-2361
The standard of care for unresectable lung cancer is chemoradiation. However, therapeutic options are limited and patients are rarely cured. We have previously shown that vitamin D and vitamin D analogs such as EB 1089 can enhance the response to radiation in breast cancer through the promotion of a cytotoxic form of autophagy. In A549 and H460 non-small cell lung cancer (NSCLC) cells, 1,25-D3 (the hormonally active form of vitamin D) and EB 1089 prolonged the growth arrest induced by radiation alone and suppressed proliferative recovery, which translated to a significant reduction in clonogenic survival. In H838 or H358 NSCLC cells, which lack VDR/vitamin D receptor or functional TP53, respectively, 1,25-D3 failed to modify the extent of radiation-induced growth arrest or suppress proliferative recovery post-irradiation. Sensitization to radiation in H1299 NSCLC cells was evident only when TP53 was induced in otherwise tp53-null H1299 NSCLC cells. Sensitization was not associated with increased DNA damage, decreased DNA repair or an increase in apoptosis, necrosis, or senescence. Instead sensitization appeared to be a consequence of the conversion of the cytoprotective autophagy induced by radiation alone to a novel cytostatic form of autophagy by the combination of 1,25-D3 or EB 1089 with radiation. While both pharmacological and genetic suppression of autophagy or inhibition of AMPK phosphorylation sensitized the NSCLC cells to radiation alone, inhibition of the cytostatic autophagy induced by the combination treatment reversed sensitization. Evidence for selectivity was provided by lack of radiosensitization in normal human bronchial cells and cardiomyocytes. Taken together, these studies have identified a unique cytostatic function of autophagy that appears to be mediated by VDR, TP53, and possibly AMPK in the promotion of an enhanced response to radiation by 1,25-D3 and EB 1089 in NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号