首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cell (DC) vaccines offer a robust platform for the development of cancer vaccines, but their effectiveness is thought to be limited by T regulatory cells (Tregs). Recombinant adenoviruses (RAdV) have been used successfully to engineer tumor antigen expression in DCs, but the impact of virus transduction on susceptibility to suppression by Tregs is unknown. We investigated the functional consequences of exposure to adenovirus on interactions between human monocyte-derived DCs and Tregs. Since the development of Tregs is linked to that of pro-inflammatory Th17 cells, the role of Th17 cells and IL-17-producing Tregs in the context of DC-based immunotherapies was also investigated. We found that Tregs potently suppressed the co-stimulatory capacity of RAdV-transduced DCs, regardless of whether the DCs were maturated by inflammatory cytokines or by exposure to Th1 or Th17 cells. Furthermore, exposure of Tregs to RAdV-exposed DCs increased IL-17 production and suppressive capacity, and correlated with enhanced secretion of IL-1β and IL-6 by DCs. The findings that DCs exposed to RAdV are suppressed by Tregs, promote Treg plasticity, and enhance Treg suppression indicates that strategies to limit Tregs will be required to enhance the efficacy of such DC-based immunotherapies.  相似文献   

2.
Endurance, marathon-type exertion is known to induce adverse changes in the immune system. Increased airway hyper-responsiveness and airway inflammation are well documented in endurance athletes and endurance exercise is considered a major risk factor for asthma in elite athletes. Yet, the mechanisms underlying this phenomenon are still to be deduced. We studied the effect of strenuous endurance exercise (marathon and half-ironman triathlon) on CD4+ lymphocyte sub-populations and on the balance between effector and regulatory CD4+ lymphocytes in the peripheral blood of trained athletes, Endurance exercise induced a significant increase in Th17 cells and a sustained decrease in peripheral blood regulatory T cells (Tregs). While interleukin (IL)-2 levels remained undetectable, post-race serum IL-6 and transforming growth factor (TGF) β levels were significantly elevated. Treg levels in sedentary controls'' decreased in vitro after incubation with athletes'' post-exercise serum, an effect that was attenuated by supplements of IL-2 or anti IL-6 neutralizing antibodies. Our data suggest that exercise-induced changes in serum cytokine levels promote alterations in Tregs and Th17 cell populations, which may divert the subtle balance in the immune system towards inflammation. This may explain allergic and autoimmune phenomena previously reported in endurance athletes and contribute to our understanding of exercise-related asthma.  相似文献   

3.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

4.
Hodge G  Scott J  Osborn M  To LB  Zola H  Hodge S  Revesz T 《Cytokine》2011,53(3):286-288
BackgroundPaediatric oncology patients with febrile neutropenia are usually hospitalised and treated with empirical broad-spectrum antibiotic therapy to counter the risk of infection. However, there is currently no method available to rapidly identify bacteremia in these patients. T-helper-type-1 (Th1) cytokines are required for effective immune response to many pathogenic organisms and T regulatory cells are known suppressors of Th1 cells. We hypothesized that characterization of reduced intracellular Th1 cytokines and increased T regulatory cells (Tregs) may prove useful in identifying infection in childhood oncology patients with febrile neutropenia.MethodsIntracellular Th 1 cytokines and Tregs were enumerated in peripheral blood from a group of childhood oncology patients with febrile neutropenia using multiparameter flow cytometry.ResultsThere was a significant increase in the percentage of CD25+ CD127? CD8? CD3+ Tregs and a significant decrease in Th1 intracellular cytokines IFNγ, IL-2 and TNFα in the blood of culture positive patients compared with culture negative patients.ConclusionsEnumeration of Tregs and intracellular Th1 cytokines may provide a sensitive, specific test for determining infection in childhood oncology patients before blood culture results become available.  相似文献   

5.
《Cytokine》2015,72(2):261-267
ObjectiveWe compared levels of Th1/Th2/Th17 cytokines and T-regulatory cells in active and remitting granulomatosis with polyangiitis (GPA).MethodologyTwenty-one cases of GPA in active state as well as in remitting state and 20 healthy controls (HC) were enrolled in the study. Cytokines were detected in culture supernatants of PBMCs after stimulation with proteinase-3 (PR3) and phytohemagglutinin antigen (PHA). Serum IL-17 cytokine was studied by ELISA. T-regulatory cells (Tregs) were analyzed by flow cytometry. Gene expression of FOXP3 and ROR-γt was compared by Real Time PCR.ResultsWe observed significantly increased level of IL-17 in serum as well in culture supernatants of PBMCs after PR3 stimulation along with ROR-γt gene expression in active disease state of GPA as compared to HC. Importantly, remitting state showed low levels of serum IL-17 with decreased ROR-γt gene expression and increased FOXP3 expression. Using PR3 as an immunostimulant, we could demonstrate the generation of IL-17 and TNF-α secreting effector memory cells during remission. Reduced FOXP3 expression with reduced IL-10 levels in active disease indicated the reduced function of Tregs in active disease.ConclusionWe observed Th17 dominant environment in peripheral blood of patients in active state of disease, with “hyporesponsiveness”, in, in vitro stimulated PBMC-in their ability to secrete TNF-α and IL-6. Treg numbers were unaltered but function was compromised. Targeting PR3 specific effector memory cells, to prevent relapse, and instituting anti IL-17 therapy, or modulating Tregs could be newer forms of therapy for this serious autoimmune disease.  相似文献   

6.
Following its accumulation in the body, cadmium (Cd) exposure is associated with devastating effects on multiple organ system of the human body. The immune system is one of the sensitive targets for Cd-induced toxicity. Recently, studies have demonstrated a significant role of Cd in inducing epigenetic alterations. With this background, the present study was planned to study the changes in candidate microRNA (miRNA) expression associated with immune regulation in occupationally Cd-exposed workers. One hundred individuals involved in welding and metal handicraft manufacturing, while 80 apparently healthy subjects without any prior history of occupational exposure were recruited for the study. Blood Cd level was determined by atomic absorption spectrometry. Serum cytokine levels were measured using an enzyme-linked immunosorbent assay and serum miRNA expression of candidate miRNAs (miR-146a, miR-210, and miR-222) were determined by real-time polymerase chain reaction. The median Cd level (2.40 μg/L) in the occupationally exposed workers was significantly higher than the nonexposed subjects (0.90 μg/L). Among the cytokines, interleukin-4 (IL-4), and tumor necrosis factor-alpha (TNF-α) were significantly higher while IL-2 and IL-10 were significantly lower in the exposed. The expression level of miR-146a and miR-222 were significantly different between the groups with the former showing downregulation and later showing upregulation. Correlation analysis revealed a positive and negative association of miR-222 and miR-146a with blood cadmium level, IL-17 as well as TNF-α, respectively. Furthermore, the in-silico analysis revealed a significant role of the studied miRNAs in various cellular and genetic pathways. The findings of the present study demonstrate significant involvement of Cd-induced alteration in miRNAs in varied immune regulatory changes in exposed individuals.  相似文献   

7.
CD4+CD25+FoxP3+ regulatory T cells (Tregs) and Th17 cells are known to be involved in the alloreactive responses in organ transplantation, but little is known about the relationship between Tregs and Th17 cells in the context of liver alloresponse. Here, we investigated whether the circulating Tregs/Th17 ratio is associated with acute allograft rejection in liver transplantation. In present study, thirty-eight patients who received liver transplant were enrolled. The patients were divided into two groups: acute allograft rejection group (Gr-AR) (n = 16) and stable allograft liver function group (Gr-SF) (n = 22). The frequencies of circulating Tregs and circulating Th17 cells, as well as Tregs/Th17 ratio were determined using flow cytometry. The association between Tregs/Th17 ratio and acute allograft rejection was then analyzed. Our results showed that the frequency of circulating Tregs was significantly decreased, whereas the frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection. Tregs/Th17 ratio had a negative correlation with liver damage indices and the score of rejection activity index (RAI) after liver transplantation. In addition, the percentages of CTLA-4+, HLA-DR+, Ki67+, and IL-10+ Tregs were higher in Gr-SF group than in Gr-AR group. Our results suggested that the ratio of circulating Tregs/Th17 cells is associated with acute allograft rejection, thus the ratio may serve as an alternative marker for the diagnosis of acute rejection.  相似文献   

8.
In the context of a large-scale molecular epidemiology study, the possible immunomodulatory effects of mineral fibres, in workers occupationally exposed to asbestos, rockwool and glass fibres, were examined. In each plant, 61, 98 and 80 exposed workers and 21, 43 or 36 control clerical subjects, respectively, were recruited. In the case of the asbestos-exposed subjects, an additional town-control group of 49 people was included. Evidence of pulmonary fibrosis was found in 42% of the asbestos-exposed workers, while evidence of pleural fibrosis was found in 24%. The asbestos-exposed cohort had significantly decreased forced vital capacity of lungs as well as forced expiratory volume per first second. Our findings indicate that exposure to all three types of fibres examined modulates to different degrees the immune response. Suppression of T-cell immunity and to a lesser extent, B-cell immunity was found in the case of workers from a former asbestos cement plant, while stimulation of T-cell response was observed in rockwool workers, and stimulation of T- and B-cell response was seen in glass fibre workers. Depression of the percentage of lymphocyte subpopulation of CD 16+56 (natural killer cells) in peripheral blood was found in glass fibre workers. Statistical analysis showed increased levels of proinflammatory cytokines (IL-6 asbestos; IL-8 all three fibres), expression of adhesion molecule L-selectin on granulocytes and monocytes (asbestos), levels of soluble adhesion molecules (SAMs) in sera (ICAM-1 all three fibres; E-selectin glass fibres), increased levels of immunoglobulin E (asbestos and rockwool) and elevated expression of activation markers on eosinophils (CD66b asbestos, glass fibres; CD69 asbestos). Significant correlations were observed between lymphocyte proliferation and markers of DNA damage and repair. Increased levels of proinflammatory cytokines, SAMs, immunoglobulin E and elevated expression of activation markers on eosinophils was found in people with symptoms of hypersensitivity and an elevated inflammatory status.  相似文献   

9.
Objective & designInvestigation was carried out on Saponin 1 (SAP-1), a novel molecule isolated from Parthenium hysterophorus, on proinflammatory (Th1) & anti-inflammatory (Th2) cytokines in blood of arthritic balb/c mice.MethodsAdjuvant induced developing inflammatory arthritis was induced in mice which were treated with SAP-1 in graded oral doses. The molecular markers were determined using Flow Cytometry which uses sensitivity of amplified fluorescence detection to measure soluble analytes in particle based immune assay. The T-helper (Th1) deviated cells produce detectable level of Tumor necrosis factor (TNF-alpha), interleukin-2 (IL-2) & interferon-gamma (IFN-gamma), while the Th2 deviated cells produce significant amount of interleukin-4 (IL-4) and interleukin-5 (IL-5).ResultsSAP-1 at graded oral doses inhibited expression of IFN-gamma & TNF-alpha in serum & correspondingly increased expression of IL-4 significantly. SAP-1 also inhibited IL-17 and CD4+CD25+ cell population showing to have suppressive effect on Th-17 pathway as well as T-regulatory cells. It also suppressed the increased levels of pro-inflammatory mediators like IL-1β and NO. Inhibitors of Cox-2 and MCP-1 provide effective improvements in signs and symptoms of Rheumatoid Arthritis. SAP-1 decreased the elevated concentration of both COX-2 and MCP-1 in arthritic animals.ConclusionsSAP-1 diminishes Th1 immunity activation, a primary cause of arthritis, in favour of Th2 dominance, which reduces arthritic condition in mice displaying immune-modulatory potential.  相似文献   

10.
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are required to restrain the immune system from mounting an autoaggressive systemic inflammatory response, but why their activity can prevent (or allow) organ-specific autoimmunity remains poorly understood. We have examined how TCR specificity contributes to Treg activity using a mouse model of spontaneous autoimmune arthritis, in which CD4(+) T cells expressing a clonotypic TCR induce disease by an IL-17-dependent mechanism. Administration of polyclonal Tregs suppressed Th17 cell formation and prevented arthritis development; notably, Tregs expressing the clonotypic TCR did not. These clonotypic Tregs exerted Ag-specific suppression of effector CD4(+) T cells using the clonotypic TCR in vivo, but failed to mediate bystander suppression and did not prevent Th17 cells using nonclonotypic TCRs from accumulating in joint-draining lymph nodes of arthritic mice. These studies indicate that the availability of Tregs with diverse TCR specificities can be crucial to their activity in autoimmune arthritis.  相似文献   

11.
Comprehensive studies of the frequencies and absolute numbers of the various cell lineages that synthesize IL-17 in the blood and corresponding gastrointestinal (GI) tissues, their correlation with CD4+ Tregs, CD8+ Tregs, total and IFN-α synthesizing plasmacytoid dendritic cells (pDC) relative to plasma viral load in SIV infection has been lacking. The unique availability of SIV infected rhesus macaques (RM) classified as Elite Controllers (EC), and those with Low, Intermediate and High Viral Loads (HVL) provided a unique opportunity to address this issue. Results of these studies showed that EC demonstrated a remarkable ability to reverse changes that are induced acutely by SIV in the various cell lineages. Highlights of the differences between EC and HVL RM within Gastro-intestinal tissues (GIT) was the maintenance and/or increases in the levels of IL-17 synthesizing CD4, CD8, and NK cells and pDCs associated with slight decreases in the levels of CD4+ Tregs and IFN-α synthesizing pDCs in EC as compared with decreases in the levels of IL-17 synthesizing CD4, CD8 and NK cells associated with increases in pDCs and IFN-α synthesizing pDCs in HVL monkeys. A previously underappreciated role for CD8+ Tregs was also noted with a moderate increase in ECs but further increases of CD8+ Tregs with increasing VL in viremic monkeys. Positive correlations between plasma VL and decreases in the levels of Th17, Tc17, NK-17, CD4+ Tregs and increases in the levels of CD8+ Tregs, total and IFN-α synthesizing pDCs were also noted. This study also identified 2 additional IL-17+ subsets in GIT as CD3−/CD8+/NKG2a and CD3+/CD8+/NKG2a+ subsets. Studies also suggest a limited role for IFN-α synthesizing pDCs in chronic immune activation despite persistent up-regulation of ISGs. Finally, elevated persistent innate immune responses appear associated with poor prognosis. These findings provide an initial foundation for markers important to follow for vaccine design.  相似文献   

12.
T cell Ig domain and mucin domain (TIM)-3 has previously been established as a central regulator of Th1 responses and immune tolerance. In this study, we examined its functions in allograft rejection in a murine model of vascularized cardiac transplantation. TIM-3 was constitutively expressed on dendritic cells and natural regulatory T cells (Tregs) but only detected on CD4(+)FoxP3(-) and CD8(+) T cells in acutely rejecting graft recipients. A blocking anti-TIM-3 mAb accelerated allograft rejection only in the presence of host CD4(+) T cells. Accelerated rejection was accompanied by increased frequencies of alloreactive IFN-γ-, IL-6-, and IL-17-producing splenocytes, enhanced CD8(+) cytotoxicity against alloantigen, increased alloantibody production, and a decline in peripheral and intragraft Treg/effector T cell ratio. Enhanced IL-6 production by CD4(+) T cells after TIM-3 blockade plays a central role in acceleration of rejection. Using an established alloreactivity TCR transgenic model, blockade of TIM-3 increased allospecific effector T cells, enhanced Th1 and Th17 polarization, and resulted in a decreased frequency of overall number of allospecific Tregs. The latter is due to inhibition in induction of adaptive Tregs rather than prevention of expansion of allospecific natural Tregs. In vitro, targeting TIM-3 did not inhibit nTreg-mediated suppression of Th1 alloreactive cells but increased IL-17 production by effector T cells. In summary, TIM-3 is a key regulatory molecule of alloimmunity through its ability to broadly modulate CD4(+) T cell differentiation, thus recalibrating the effector and regulatory arms of the alloimmune response.  相似文献   

13.
目的:探讨肺炎支原体肺炎伴喘息儿童血清25羟基维生素D3[25(OH)D_3]、辅助性17细胞/调节性T细胞(Th17/Treg)表达水平与肺功能的关系。方法:将新疆医科大学第五附属医院收治的肺炎支原体肺炎伴喘息患儿26例作为肺炎伴喘息组,肺炎支原体肺炎不伴有喘息患儿54例作为肺炎不伴喘息组,另选取健康儿童30例作为对照组,比较各组血清25(OH)D_3、白细胞介素(IL)-10、IL-17、Th17细胞及Treg细胞占CD4+T细胞比例及肺功能,并分析其相关性。结果:肺炎伴喘息组血清25(OH)D_3、IL-10、Treg细胞占CD4+T细胞比例低于肺炎不伴喘息组、对照组,Th17细胞占CD4+T细胞比例、Th17/Treg、IL-17高于肺炎不伴喘息组、对照组(P0.05)。各组第一秒最大呼气量占用力肺活量百分比(FEV1/FVC)比较差异无统计学意义(P0.05),肺炎伴喘息组FEV1占预计值百分比(FEV1%pred)、峰值呼气流量(PEF)低于肺炎不伴喘息组、对照组(P0.05),肺炎不伴喘息组与对照组FEV1%pred、PEF比较无统计学意义(P0.05)。肺炎伴喘息组患儿血清25 (OH)D_3与Th17/Treg、IL-17呈负相关(P0.05),与IL-10、FEV1%pred、PEF呈正相关(P0.05),血清Th17/Treg与IL-10、FEV1%pred、PEF呈负相关(P0.05),与IL-17呈正相关(P0.05)。结论:肺炎支原体肺炎伴喘息儿童血清25(OH)D_3、Th17/Treg表达水平异常,肺功能下降,且25(OH)D_3、Th17/Treg表达水平与肺功能相关。  相似文献   

14.
IL-17A is a proinflammatory cytokine that has received attention for its role in the pathogenesis of several autoimmune diseases. IL-17A has also been implicated in cardiac and renal allograft rejection. Accordingly, we hypothesized that depletion of IL-17A would enhance corneal allograft survival. Instead, our results demonstrate that blocking IL-17A in a mouse model of keratoplasty accelerated the tempo and increased the incidence of allograft rejection from 50 to 90%. We describe a novel mechanism by which CD4(+)CD25(+) regulatory T cells (Tregs) respond to IL-17A and enhance corneal allograft survival. Our findings suggest the following: 1) IL-17A is necessary for ocular immune privilege; 2) IL-17A is not required for the induction of anterior chamber-associated immune deviation; 3) Tregs require IL-17A to mediate a contact-dependent suppression; 4) corneal allograft Tregs suppress the efferent arm of the immune response and are Ag specific; 5) Tregs are not required for corneal allograft survival beyond day 30; and 6) corneal allograft-induced Treg-mediated suppression is transient. Our findings identify IL-17A as a cytokine essential for the maintenance of corneal immune privilege and establish a new paradigm whereby interplay between IL-17A and CD4(+)CD25(+) Tregs is necessary for survival of corneal allografts.  相似文献   

15.
Vasoactive intestinal peptide (VIP) is a well-known anti-inflammatory neuropeptide. The capacity of VIP can be exhibited through inhibiting inflammatory responses, shifting the Th1/Th2 balance in favor of anti-inflammatory Th2 immunity and inducing regulatory T cells (Tregs) with suppressive activity. In addition to pro-inflammatory Th1 response, Th17 are also believed to play important roles in the pathogenesis of rheumatoid arthritis (RA). In this study, we used collagen-induced arthritis (CIA) model in Wistar rats to investigate the role of VIP in the balance of CD4+ CD25+ Tregs and Th17 on RA. Data presented here showed that administration of VIP decreased incidence and severity of CIA. Disease suppression was associated with the upregulation of CD4+ CD25+ Tregs, downregulation of Th17- and Th1-type response and influence on the RANK/RANKL/OPG system. The results provide novel evidence that the therapeutic effects of VIP on CIA rats were associated with the balance of CD4+ CD25+ Tregs and Th17.  相似文献   

16.
Loss of CD4 T cell help correlates with virus persistence during acute hepatitis C virus (HCV) infection, but the underlying mechanism(s) remain unknown. We developed a combined proliferation/intracellular cytokine staining assay to monitor expansion of HCV-specific CD4 T cells and helper cytokines expression patterns during acute infections with different outcomes. We demonstrate that acute resolving HCV is characterized by strong Th1/Th17 responses with specific expansion of IL-21-producing CD4 T cells and increased IL-21 levels in plasma. In contrast, viral persistence was associated with lower frequencies of IL-21-producing CD4 T cells, reduced proliferation and increased expression of the inhibitory receptors T cell immunoglobulin and mucin-domain-containing-molecule-3 (Tim-3), programmed death 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on HCV-specific CD8 T cells. Progression to persistent infection was accompanied by increased plasma levels of the Tim-3 ligand Galectin-9 (Gal-9) and expansion of Gal-9 expressing regulatory T cells (Tregs). In vitro supplementation of Tim-3high HCV-specific CD8 T cells with IL-21 enhanced their proliferation and prevented Gal-9 induced apoptosis. siRNA-mediated knockdown of Gal-9 in Treg cells rescued IL-21 production by HCV-specific CD4 T cells. We propose that failure of CD4 T cell help during acute HCV is partially due to an imbalance between Th17 and Treg cells whereby exhaustion of both CD4 and CD8 T cells through the Tim-3/Gal-9 pathway may be limited by IL-21 producing Th17 cells or enhanced by Gal-9 producing Tregs.  相似文献   

17.
CD4(+)Foxp3(+) regulatory T cells (Tregs) have been considered crucial in controlling immune system homeostasis, and their derangement is often associated to autoimmunity. Tregs identification is, however, difficult because most markers, including CD25 and Foxp3, are shared by recently activated T cells. We show in this paper that CD4(+)Foxp3(+) T cells are generated in peripheral lymphoid organs on immunization and readily accumulate in the target organ of an autoimmune reaction, together with classical inflammatory cells, constituting up to 50% of infiltrating CD4(+) T cells. Most CD4(+)Foxp3(+) T cells are, however, CD25(-) and express proinflammatory cytokines such as IL-17 and IFN-γ, questioning their suppressive nature. Moreover, in vitro CD4(+) T lymphocytes from naive and autoimmune mice, stimulated to differentiate into Th1, Th2, Th17, and induced Tregs, display early mixed expression of lineage-specific markers. These results clearly point to an unprecedented plasticity of naive CD4(+) T cells, that integrating inflammatory signals may change their fate from the initial lineage commitment to a different functional phenotype.  相似文献   

18.
An appropriate balance between proinflammatory (Th17 and Th1) and anti-inflammatory (regulatory T cells [Tregs] and Th2) subsets of T cells is critical to maintain homeostasis and avoid inflammatory disease. Type 2 diabetes (T2D) is a chronic inflammatory disease promoted by changes in immune cell function. Recent work indicates T cells are important mediators of inflammation in a mouse model of T2D. These studies identified an elevation in the Th17 and Th1 subsets with a decrease in the Treg subset, which culminates in inflammation and insulin resistance. Based on these data, we tested the hypothesis that T cells in T2D patients are skewed toward proinflammatory subsets. Our data show that blood from T2D patients has increased circulating Th17 cells and elevated activation of Th17 signature genes. Importantly, T cells required culture with monocytes to maintain Th17 signatures, and fresh ex vivo T cells from T2D patients appeared to be poised for IL-17 production. T cells from T2D patients also have increased production of IFN-γ, but produce healthy levels of IL-4. In contrast, T2D patients had decreased percentages of CD4(+) Tregs. These data indicate that T cells in T2D patients are naturally skewed toward proinflammatory subsets that likely promote chronic inflammation in T2D through elevated cytokine production. Potential therapies targeted toward resetting this balance need to be approached with caution due to the reciprocal relationship between Th17 cells and Tregs. Understanding the unique aspects of T2D T cells is essential to predict outcomes of such treatments.  相似文献   

19.

Background

In patients with end stage renal disease (ESRD) we observed protection from inflammation-associated mortality in CCR5Δ32 carriers, leading to CCR5 deficiency, suggesting impact of CCR5Δ32 on inflammatory processes. Animal studies have shown that CCR5 deficiency is associated with a more pronounced Th2 type immune response, suggesting that in human CCR5Δ32 carriers the immune response may be more Th2 type directed. So, in the present study we determined the Th1-Th2 type directed immune response in ESRD patients carrying and not carrying the CCR5Δ32 genetic variant after stimulation.

Methodology/Principal Findings

We tested this hypothesis by determining the levels of IFN-γ and IL-4 and the distribution of Th1, Th2 and Th17 directed circulating CD4+ and CD8+ T cells and regulatory T cells (Tregs) after stimulation in ESRD patients with (n = 10) and without (n = 9) the CCR5Δ32 genotype. The extracellular levels of IFN-γ and IL-4 did not differ between CCR5Δ32 carriers and non carriers. However, based on their intracellular cytokine profile the percentages IL-4 secreting CD4+ and CD8+ T cells carrying the CCR5Δ32 genotype were significantly increased (p = 0.02, respectively p = 0.02) compared to non carriers, indicating a more Th2 type directed response. Based on their intracellular cytokine profile the percentages IFN-γ and IL-17 secreting T cells did not differ between carriers and non-carriers nor did the percentage Tregs, indicating that the Th1, Th17 and T regulatory response was not affected by the CCR5Δ32 genotype.

Conclusions/Significance

This first, functional human study shows a more pronounced Th2 type immune response in CCR5Δ32 carriers compared to non carriers. These differences may be involved in the previously observed protection from inflammation-associated mortality in ESRD patients carrying CCR5Δ32.  相似文献   

20.
Lymphocyte differentiation from naive CD4(+) T cells into mature Th1, Th2, Th17, or T regulatory cell (Treg) phenotypes has been considered end stage in character. In this study, we demonstrate that dendritic cells (DCs) activated with a novel immune modulator B7-DC XAb (DC(XAb)) can reprogram Tregs into T effector cells. Down-regulation of FoxP3 expression after either in vitro or in vivo Treg-DC(XAb) interaction is Ag-specific, IL-6-dependent, and results in the functional reprogramming of the mature T cell phenotype. The reprogrammed Tregs cease to express IL-10 and TGFbeta, fail to suppress T cell responses, and gain the ability to produce IFN-gamma, IL-17, and TNF-alpha. The ability of IL-6(+) DC(XAb) and the inability of IL-6(-/-) DC(XAb) vaccines to protect animals from lethal melanoma suggest that exogenously modulated DC can reprogram host Tregs. In support of this hypothesis and as a test for Ag specificity, transfer of DC(XAb) into RIP-OVA mice causes a break in immune tolerance, inducing diabetes. Conversely, adoptive transfer of reprogrammed Tregs but not similarly treated CD25(-) T cells into naive RIP-OVA mice is also sufficient to cause autoimmune diabetes. Yet, treatment of normal mice with B7-DC XAb fails to elicit generalized autoimmunity. The finding that mature Tregs can be reprogrammed into competent effector cells provides new insights into the plasticity of T cell lineage, underscores the importance of DC-T cell interaction in balancing immunity with tolerance, points to Tregs as a reservoir of autoimmune effectors, and defines a new approach for breaking tolerance to self Ags as a strategy for cancer immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号