首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
AimsRecent interest has focused on plant antioxidants as potentially useful neuroprotective agents. In most studies only the genuine forms of flavonoids were used, although they are rapidly metabolized. Therefore, we have compared protective activities of two flavonoids (luteolin, quercetin) and two of their bioavailable metabolites (3,4-DHPAA and 3,4-DHT) against oxidative stress, induced by peroxides (t-BHP, H2O2) and iron (FeSO4), in neuronal PC12 cells.Main methodsWe have measured their effect on the prevention of cell death (MTT assay), glutathione depletion (GSH assay), lipid peroxidation (MDA assay) and production of ROS (DCF assay). Differentiated PC12 cells were used as a model system of neuronal cells. The compounds (concentration range 6–25 µmol/L) were tested in preincubation and coincubation experiments.Key findingsIn MTT and DCF assays all tested compounds showed excellent protection. When cells were exposed to peroxides, both metabolites increased GSH levels less efficiently than their parent flavonoids in both types of incubations. Following exposure to iron, only coincubation significantly prevented GSH depletion and the metabolites surprisingly mimicked the suppressive effect of flavonoids. MDA levels induced by all stressors were reduced more potently during coincubation than during preincubation with polyphenols. While the lipophilic metabolite 3,4-DHT exerted excellent antilipoperoxidant activity, the hydrophilic metabolite 3,4-DHPAA was less effective.SignificanceThese results demonstrate that most of the protective effects of flavonoids against oxidative stress in PC12 cells are continued despite biodegradation of the parent flavonoids. In general, the lipophilic metabolite 3,4-DHT was more active than the hydrophilic 3,4-DHPAA.  相似文献   

2.
BackgroundQuercetin is a natural flavonoid, which widely exists in nature, such as tea, coffee, apples, and onions. Numerous studies have showed that quercetin has multiple biological activities such as anti-oxidation, anti-inflammatory, and anti-aging. Hence, quercetin has a significant therapeutic effect on cancers, obesity, diabetes, and other diseases. In the past decades, a large number of studies have shown that quercetin combined with other agents can significantly improve the overall therapeutic effect, compared to single use.PurposeThis work reviews the pharmacological activities of quercetin and its derivatives. In addition, this work also summarizes both in vivo and in vitro experimental evidence for the synergistic effect of quercetin against cancers and metabolic diseases.MethodsAn extensive systematic search for pharmacological activities and synergistic effect of quercetin was performed considering all the relevant literatures published until August 2021 through the databases including NCBI PubMed, Scopus, Web of Science, and Google Scholar. The relevant literatures were extracted from the databases with following keyword combinations: "pharmacological activities" OR "biological activities" OR "synergistic effect" OR "combined" OR "combination" AND "quercetin" as well as free-text words.ResultsQuercetin and its derivatives possess multiple pharmacological activities including anti-cancer, anti-oxidant, anti-inflammatory, anti-cardiovascular, anti-aging, and neuroprotective activities. In addition, the synergistic effect of quercetin with small molecule agents against cancers and metabolic diseases has also been confirmed.ConclusionQuercetin cooperates with agents to improve the therapeutic effect by regulating signal molecules and blocking cell cycle. Synergistic therapy can reduce the dose of agents and avoid the possible toxic and side effects in the treatment process. Although quercetin treatment has some potential side effects, it is safe under the expected use conditions. Hence, quercetin has application value and potential strength as a clinical drug. Furthermore, quercetin, as the main effective therapeutic ingredient in traditional Chinese medicine, may effectively treat and prevent coronavirus disease 2019 (COVID-19).  相似文献   

3.
Aim: To develop a faster and easier in vivo method to screen compounds for anti‐oxidant activity using a microbial system. Methods and Results: Bacterial redox sensor‐based assay systems were applied. The activities of SoxR and OxyR, the bacterial redox sensors, were monitored to probe the intracellular redox status through two reporter strains, Escherichia coli soxSplacZ and oxySplacZ fusions, which specifically respond to paraquat, a superoxide generator, and H2O2, respectively, with practically no cross reactivity. For the test screening, 27 natural compounds including phenolics and flavonoids that are putatively considered anti‐oxidant nutritional supplements were collected and assayed for their capability to alleviate oxidative stress in these bacterial systems. Among them, rutin, kaempferol and quercetin had significant anti‐H2O2 activity, and betaine, glycyrrhizic acid and baicalin had weak anti‐superoxide activity. While rutin, kaempferol and quercetin significantly reduced the H2O2 stress at low concentrations, betaine, glycyrrhizic acid and baicalin required higher concentration for their anti‐superoxide effects. In vitro, only quercetin protected DNA in a metal‐catalysed oxidation system, suggesting that the other compounds might indirectly exert their anti‐oxidant activities through other biological functions. Finally, quercetin, rutin and kaempferol significantly restored the viability of a superoxide dismutase mutant that has limited viability because of defective defence against oxidative stress. Conclusion: These bacterial systems could provide a more efficient method for measuring the activity of compounds affecting cellular oxidative stress and viability. Significance and Impact of the Study: The demand for anti‐oxidant and anti‐ageing activities is increasing in one of the fastest growing segments of the functional food market, but the screening for these activities is currently very laborious, expensive and time consuming. This study suggests a basis for a high throughput screening method for these activities.  相似文献   

4.
Abstract

Phyllanthus amarus Linn is a widely distributed tropical medicinal plant highly valued for its therapeutic properties. The antioxidant activity of some of its principal constituents, namely amariin, 1-galloyl-2,3-dehydrohexahydroxydiphenyl (DHHDP)-glucose, repandusinic acid, geraniin, corilagin, phyllanthusiin D, rutin and quercetin 3-O-glucoside were examined for their ability to scavenge free radicals in a range of systems including 2,2-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)/ferrylmyoglobin, ferric reducing antioxidant power (FRAP) and pulse radiolysis. In addition, their ability to protect rat liver mitochondria against oxidative damage was determined by measuring the ROO? radical induced damage to proteins and lipids and ?OH radical induced damage to plasmid DNA. The compounds showed significant antioxidant activities with differing efficacy depending on the assays employed. Amariin, repandusinic acid and phyllanthusiin D showed higher antioxidant activity among the ellagitannins and were comparable to the flavonoids, rutin and quercetin 3-O-glucoside.  相似文献   

5.
Endothelial dysfunction is an early pathophysiological feature and independent predictor of poor prognosis in most forms of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. In the present paper, we review the effects of flavonoids, especially quercetin and wine polyphenols, on endothelial function and dysfunction and its potential protective role in hypertension, ischemic heart disease and stroke. In vitro studies show that flavonoids may exert multiple actions on the NO-guanylyl cyclase pathway, endothelium-derived hyperpolarizing factor(s) and endothelin-1 and protect endothelial cells against apoptosis. In vivo, flavonoids prevent endothelial dysfunction and reduce blood pressure, oxidative stress and end-organ damage in hypertensive animals. Moreover, some clinical studies have shown that flavonoid-rich foods can improve endothelial function in patients with hypertension and ischemic heart disease. Altogether, the available evidence indicates that quercetin and wine polyphenols might be of therapeutic benefit in cardiovascular diseases even though prospective controlled clinical studies are still lacking.  相似文献   

6.
In this study, we set out to investigate the effect of sodium chloride (NaCl) on carotenoid and flavonoid production by the black nightshade (Solanum nigrum L.). The study was carried out under green chamber conditions using seedlings subjected to 0, 50, 100 and 150 mM NaCl for 3 weeks. The negative effect of NaCl on dry biomass production of roots and leaves were accompanied by a significant restriction in K+, Ca2+ and Mg2+ ion uptake and by an increase in Na+ ion concentrations, the effects of which were most pronounced at the highest NaCl level. Salt stress also induced oxidative stress, according to the amplified levels of thiobarbituric acid reactive substances and relative ion leakage ratio. Expression of some related carotenoid (phytoene synthase 2 and β-lycopene cyclase) and flavonoids genes (phenylalanine ammonialyase, chalcone synthase and flavonol synthase) were induced by NaCl, followed enhanced production of β-carotene, lutein, and quercetin 3-β-d-glucoside. At the highest NaCl level (150 mM NaCl), quercetin 3-β-d-glucoside synthesis came at the expense of reduced β-carotene and lutein, while salt stress treatment affected leaf antioxidant activities to a great extent relative to the control. Our data suggest that the potential antioxidant properties of carotenoids and flavonoids and their related key genes may be efficiently involved in the restriction of salt-induced oxidative damages.  相似文献   

7.
Flavonoid metabolism: the interaction of metabolites and gut microbiota   总被引:1,自引:0,他引:1  
Abstract

Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.  相似文献   

8.
Objectives: Oxidative stress is known to participate in the progression of sepsis. Definite data regarding the behavior of oxidative stress biomarkers in pediatric sepsis is still lacking. This study hypothesized that oxidative stress occurs in pediatric sepsis and that the magnitude of the redox derangement is associated with worse clinical progression.

Methods: Forty-two previously healthy pediatric patients with sepsis and a group of control subjects were included. Oxidative stress and inflammatory activity biomarkers were determined in blood samples. Patients were prospectively followed until their discharge or death.

Results: Patients with non-severe and severe sepsis showed higher levels of plasmatic antioxidant capacity, lower erythrocyte thiol index, lower superoxide dismutase and catalase activities, higher glutathione peroxidase activity, and higher plasmatic F2-isoprostanes concentration than controls. Patients with severe sepsis had higher NF-kappaB activation than those with non-severe sepsis. Although we observed changes in some biomarkers in patients with worse clinical evolution, the explored biomarkers did not correlate with clinical estimators of outcome.

Discussion: Oxidative stress occurs in pediatric sepsis, resulting in oxidative damage. The explored biomarkers are not useful as outcome predictors in the studied population. The behavior of these biomarkers still needs to be addressed in broader groups of pediatric patients with sepsis.  相似文献   


9.
10.
11.
Objectives: The aim of this study was to determine whether non-lethal sepsis induced by cecal ligation and puncture (CLP) modulates oxidative damage and enzymatic antioxidant defenses in diaphragm and hindlimb skeletal muscles (soleus and Extensor Digitorus Longus (EDL)).

Methods: Female Wistar rats were divided into four experimental groups: (1) control animals, (2) animals sacrificed 2?hours or (3) 7 days after CLP, and (4) sham-operated animals. At the end of the experimental procedure, EDL, soleus, and diaphragm muscles were harvested and 4-hydroxynonenal (HNE)-protein adducts and protein carbonyl contents were examined in relation to superoxide dismutase and catalase expression and activities.

Results: We observed that both non-respiratory oxidative (i.e. soleus) and glycolytic skeletal muscles (i.e. EDL) are more susceptible to sepsis-induced oxidative stress than diaphragm, as attested by an increase in 4-HNE protein adducts and carbonylated proteins after 2?hours of CLP only in soleus and EDL.

Discussion: These differences could be explained by higher basal enzymatic antioxidant activities in diaphragm compared to hindlimb skeletal muscles. Together, these results demonstrate that diaphragm is better protected from oxidative stress than hindlimb skeletal muscles during CLP-induced sepsis.  相似文献   

12.
《Phytomedicine》2014,21(11):1466-1472
PurposePropolis biological effects are mainly attributed to its polyphenolic constituents such as flavonoids and phenolic acids that were recently described in the chemical composition of an extract of propolis obtained with edible vegetal oil (OEP) by our group. The aim of this study was to evaluate the effect of OEP on the behavior of rats.Materials and methodsAn in vivo open field (OF), elevated Plus-maze (EPM), and forced swimming (FS) tests were performed to evaluate locomotor activity, anxiolytic- and antidepressant effects of the extract. Besides, oxidative stress levels were measured in rat blood samples after the behavioral assays by evaluation of the Trolox equivalent antioxidant capacity (TEAC) and nitric oxide levels.ResultsOEP increased locomotion in the OF test (50 mg/kg) and central locomotion and open arm entries in the OF and EPM tests (10–50 mg/kg) and decreased the immobility time in the FS test (10–50 mg/kg). Moreover, OEP reduced nitric oxide levels in response to swim stress induced in rats.ConclusionOEP exerted stimulant, anxiolytic and antidepressant effects on the Central Nervous System and antioxidant activity in rats, highlighting propolis as a potential therapeutic compound for behavior impairment of anxiety and depression.  相似文献   

13.
In this paper, we evaluate the extent to which flavonoids in red wine (catechin, epicatechin, quercetin and procyanidins) protect against hydrogen peroxide-induced oxidative stress in Fao cells. When cells were exposed to H(2)O(2), malondialdehyde (MDA) levels, oxidized glutathione (GSSG) levels and lactate dehydrogenase (LDH) release increased, indicating membrane damage and oxidative stress. All the flavonoids studied, and in particular epicatechin and quercetin, protected the plasma membrane. Only procyanidins lowered MDA levels and LDH leakage, maintained a higher reduced/oxidized glutathione ratio, and increased catalase/superoxide dismutase and glutathione peroxidase/superoxide dismutase ratios, and glutathione reductase and glutathione transferase activities. These results show that the procyanidin mixture has a greater antioxidant effect than the individual flavonoids studied, probably due to its oligomer content and/or the additive/synergistic effect of its compounds. This suggests that the mixture of flavonoids found in wine has a greater effect than individual phenols, which may explain many of the healthy effects attributed to wine.  相似文献   

14.
Maternal intake of flavonoids, known for their antioxidant properties, may affect the offspring's susceptibility to developing chronic diseases at adult age, especially those related to oxidative stress, via developmental programming. Therefore, we supplemented female mice with the flavonoids genistein and quercetin during gestation, to study their effect on the antioxidant capacity of lung and liver of adult offspring. Maternal intake of quercetin increased the expression of Nrf2 and Sod2 in fetal liver at gestational day 14.5. At adult age, in utero exposure to both flavonoids resulted in the increased expression of several enzymatic antioxidant genes, which was more pronounced in the liver than in the adult lung. Moreover, prenatal genistein exposure induced the nonenzymatic antioxidant capacity in the adult lung, partly by increasing glutathione levels. Prenatal exposure to both flavonoids resulted in significantly lower levels of oxidative stress-induced DNA damage in liver only. Our observations lead to the hypothesis that a preemptive trigger of the antioxidant defense system in utero had a persistent effect on antioxidant capacity and as a result decreased oxidative stress-induced DNA damage in the liver.  相似文献   

15.
《Free radical research》2013,47(3):192-201
Abstract

Lead (Pb), a well-known environmental toxin, is one of the major hazards for human health. Quercetin (QE), a natural flavonoid, has been reported to have many benefits and medicinal properties. However, its protective effects against Pb-induced endoplasmic reticulum (ER) stress in liver have not been clarified. The aim of the present study was to investigate the effects of quercetin on hepatic ER stress in rats exposed to Pb. Wistar rats were exposed to lead acetate in the drinking water with or without quercetin co-administration for 75 days. Our data showed that quercetin significantly prevented Pb-induced hepatotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of liver damage and histopathological analysis. Quercetin markedly decreased Pb contents in blood and liver. Western blot analysis showed that Pb-induced ER stress in rat liver was significantly inhibited by quercetin. In exploring the underlying mechanisms of quercetin action, we found quercetin markedly suppressed Pb-induced oxidative stress. Quercetin decreased reactive oxygen species (ROS) production and increased the total antioxidant capacity in rat livers. Additionally, quercetin dramatically increased Phosphoinositide-3-kinase (PI3K) and phosphorylated protein kinase B (PKB/Akt) levels in liver rats. In the examined unfolded protein response (UPR) pathways, quercetin markedly inhibited the Pb-induced increase of the phosphorylated inositol-requiring enzyme 1 (IRE1) and c-jun N-terminal kinase (JNK) in rat liver. Taken together, these results suggested that the inhibition of Pb-induced ER stress by quercetin is due at least in part to its anti-oxidant stress activity and its ability to modulate the PI3K/Akt and IRE1/JNK signaling pathway.  相似文献   

16.
Flavonoids have recently been suggested to have the potential to serve as antioxidants other than effective UV attenuators in photoprotection. Here, we tested the hypothesis that flavonoids accumulate in response to “excess light” in the presence or in the absence of UV radiation. In a UV exclusion experiment, we grew Ligustrum vulgare plants outdoors under 30% or 100% sunlight irradiance, by cutting-off the whole UV waveband. These plants were also exposed to UV irradiance or supplied with 125 mM NaCl at the root zone. Leaves of plants under 100% sunlight irradiance suffered from excess light, which was exacerbated greatly by root zone salinity stress. Salinity stress repressed the activities of antioxidant enzymes, particularly in full sunlight, and led to severe leaf oxidative damage. Dihydroxy B-ring-substituted flavonoids, namely quercetin 3-O- and luteolin 7-O-glycosides, accumulated steeply in response to sunlight irradiance in the absence of UV radiation. UV radiation and root zone NaCl increased, to a similar degree, the concentration of these flavonoids, which have a great potential to scavenge various forms of reactive oxygen. Treatment-induced changes in leaf phenylpropanoid concentration affected antioxidant activities to a greater extent than the UV-screening capacities of leaf extracts. Early responses to an abrupt increase in sunlight irradiance included a steep increase in the concentrations of quercetin derivatives and cyanidin 3-O-glucoside, with the latter negligibly absorbing in the UV-spectral region. In contrast, effective UV attenuators, such as hydroxycinnamates and monohydroxy B-ring flavonoids, were unresponsive to the light treatments. Overall, these findings lead to the hypothesis that flavonoids may have an important antioxidant function in photoprotection. This hypothesis is further corroborated by the large distribution of quercetin and luteolin derivatives in the vacuoles of mesophyll, not only in the corresponding compartments of epidermal cells, but also in full sunlight-treated leaves in the absence of UV radiation. Future experiments aimed at evaluating the relative contribution of flavonoids within the complex antioxidant defense systems operating in the leaf are needed to help conclusively address the relevance of their antioxidant functions in photoprotection.  相似文献   

17.
18.
AimsEndurance exercise causes fatigue due to mitochondrial dysfunction and oxidative stress. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of a combination of mitochondrial targeting nutrients on physical activity, mitochondrial function and oxidative stress in exercised rats were studied.Main methodsRats were subjected to a four-week endurance exercise regimen following four weeks of training. The effects of exercise and nutrient treatment in rat liver were investigated by assaying oxidative stress biomarkers and activities of mitochondrial complexes.Key findingsEndurance exercise induced an increase in activities of complexes I, IV, and V and an increase in glutathione (GSH) levels in liver mitochondria; however, levels of ROS and malondialdehyde (MDA) and activities of complexes II and III remained unchanged. Exercise also induced a significant increase in MDA and activities of glutathione S-transferase and NADPH-quinone-oxidoreductase 1 (NQO-1) in the liver homogenate. Nutrient treatment caused amelioration of complex V and NQO-1 activities and enhancement of activities of complex I and IV, but had no effect on other parameters.SignificanceThese results show that endurance exercise can cause oxidative and mitochondrial stress in liver and that nutrient treatment can either ameliorate or enhance this effect, suggesting that endurance exercise-induced oxidative and mitochondrial stress may be either damaging by causing injury or beneficial by activating defense systems.  相似文献   

19.
《Free radical research》2013,47(6-7):451-462
Abstract

Aging and neurodegenerative diseases share oxidative stress cell damage and depletion of endogenous antioxidants as mechanisms of injury, phenomena that are occurring at different rates in each process. Nevertheless, as the central nervous system (CNS) consists largely of lipids and has a poor catalase activity, a low amount of superoxide dismutase and is rich in iron, its cellular components are damaged easily by overproduction of free radicals in any of these physiological or pathological conditions. Thus, antioxidants are needed to prevent the formation and to oppose the free radicals damage to DNA, lipids, proteins, and other biomolecules. Due to endogenous antioxidant defenses are inadequate to prevent damage completely, different efforts have been undertaken in order to increase the use of natural antioxidants and to develop antioxidants that might ameliorate neural injury by oxidative stress. In this context, natural antioxidants like flavonoids (quercetin, curcumin, luteolin and catechins), magnolol and honokiol are showing to be the efficient inhibitors of the oxidative process and seem to be a better therapeutic option than the traditional ones (vitamins C and E, and β-carotene) in various models of aging and injury in vitro and in vivo conditions. Thus, the goal of the present review is to discuss the molecular basis, mechanisms of action, functions, and targets of flavonoids, magnolol, honokiol and traditional antioxidants with the aim of obtaining better results when they are prescribed on aging and neurodegenerative diseases.  相似文献   

20.
Quercetin, a plant-derived flavonoid, is frequently used as an antioxidant for efficient anti-oxidative capacity. However, whether quercetin has protective effects on goat sperm and preimplantation embryos against Cd2+-induced oxidative injury is still unclear. So, we researched the influence of quercetin on goat sperm and zygotes respectively under the oxidative stress induced by Cd2+. In our study, quercetin decreased the malonaldehyde (MDA) and reactive oxygen species (ROS) levels caused by Cd2+ in goat sperm (p?<?0.05), which facilitated sperm characteristics including motility, survival rates, membrane integrity, and mitochondria activity during storage in vitro and subsequent embryo development (p?<?0.05). Moreover, in goat zygotes, quercetin decreased peroxidation products including ROS, MDA, and carbonyl through preserving or maintaining mitochondrial function, gene expression, and anti-oxidative products such as glutathione peroxidase, superoxide dismutase, and catalase, which ameliorated subsequent embryo development and embryo quality (p?<?0.05). Taken together, these results suggest that quercetin protects both goat sperm and preimplantation embryos from Cd2+-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号