首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Double minute chromosomes (DMs) have important implications for cancer progression because oncogenes frequently amplified on them. We previously detected a functionally undefined gene amplified on DMs, Ribosomal L22-like1 (RPL22L1). The relationship between RPL22L1 and cancer progression is unknown. Here, RPL22L1 was characterized for its role in ovarian cancer (OC) metastasis and its underlying mechanism was examined. DNA copy number and mRNA expression of RPL22L1 in OC cells was analyzed using data obtained from The Cancer Genome Atlas and the Gene Expression Omnibus database. An immunohistochemical analysis of clinical OC specimens was performed and the relationships between expression level and clinicopathological factors were evaluated. Additionally, in vivo and in vitro assays were performed to understand the role of RPL22L1 in OC. RPL22L1 expression was higher in OC specimens than in normal tissues, and its expression level was highly positively correlated with invasion and lymph node metastasis (P < 0.05). RPL22L1 over-expression significantly enhanced intraperitoneal xenograft tumor development in nude mice and promoted invasion and migration in vitro. Additionally, RPL22L1 knockdown remarkably inhibited UACC-1598 cells invasion and migration. Further, RPL22L1 over-expression up-regulated the mesenchymal markers vimentin, fibronectin, and α-SMA, reduced expression of the epithelial markers E-cadherin, α-catenin, and β-catenin. RPL22L1 inhibition reduced expression of vimentin and N-cadherin. These results suggest that RPL22L1 induces epithelial-to-mesenchymal transition (EMT). Our data showed that the DMs amplified gene RPL22L1 is critical in maintaining the aggressive phenotype of OC and in triggering cell metastasis by inducing EMT. It could be employed as a novel prognostic marker and/or effective therapeutic target for OC.  相似文献   

2.
《Reproductive biology》2022,22(4):100702
Circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)? 145–5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays. Cell proliferation, apoptosis, migration and invasion were determined using cell counting kit-8, 5-Ethynyl-2′-Deoxyuridine (Edu) incorporation, flow cytometry, transwell and Western blot assays. The binding interaction between miR-145–5p and circ_0015756 or PSAT1 was confirmed by bioinformatics prediction and dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to determine the tumor growth in vivo. Circ_0015756 was highly expressed in OC tissues and cells. Knockdown of circ_0015756 suppressed cancer cell growth, migration and invasion in vitro, as well as impeded tumor growth in vivo. In a mechanical study, circ_0015756 directly bound to miR-145–5p, and inhibition of miR-145–5p reversed the effects of circ_0015756 knockdown on OC cells. Moreover, miR-145–5p directly targeted PSAT1, and miR-145–5p weakened OC cell growth, migration and invasion via targeting PSAT1. Importantly, further studies confirmed that circ_0015756 could indirectly regulate PSAT1 expression via sponging miR-145–5p. In all, circ_0015756 accelerated OC tumorigenesis through regulating miR-145–5p/PSAT1 axis, providing a new therapeutic target for OC.  相似文献   

3.
Multiple studies have shown that protein kinase Bβ (AKT2) is involved in the development and progression of ovarian cancer, however, its precise role remains unclear. Here we explored the underlying molecular mechanisms how AKT2 promotes ovarian cancer progression. We examined the effects of AKT2 in vitro in two ovarian cancer cell lines (SKOV3 and HEY), and in vivo by metastasis assay in nude mice. The migration and invasion ability of SKOV3 and HEY cells was determined by transwell assay. Overexpression and knockdown (with shRNA) experiments were carried out to unravel the underlying signaling mechanisms induced by AKT2. Overexpression of AKT2 led to increased expression of pyruvate kinase (PKM2) in ovarian cancer cells and in lung metastatic foci from nude mice. Elevated AKT2/PKM2 expression induced cell migration and invasion in vitro, as well as lung metastasis in vivo; silencing AKT2 blocked these effects. Meanwhile, PKM2 overexpression was unable to increase AKT2 expression. The expressions of p-PI3K, p-AKT2, and PKM2 were increased when stimulated by epidermal growth factor (EGF); however, these expressions were blocked when inhibited the PI3K by LY294002. STAT3 expression was elevated and NF-κB p65 nuclear translocation was activated both in vitro and in vivo when either AKT2 or PKM2 was overexpressed; and these effects were inhibited when silencing AKT2 expression. Taken together, AKT2 increases the migration and invasion of ovarian cancer cells in vitro and promotes lung metastasis in nude mice in vivo through PKM2-mediated elevation of STAT3 expression and NF-κB activation. In conclusion, we highlight a novel mechanism of the AKT2-PKM2-STAT3/NF-κB axis in the regulation of ovarian cancer progression, and our work suggested that both AKT2 and PKM2 may be potential targets for the treatment of ovarian cancer.  相似文献   

4.
BackgroundCarnitine palmitoyltransferase 2 (CPT2) is a rate-limiting enzyme involved in fatty acid β-oxidation (FAO) regulation. Recently, it has been increasingly recognized that lipid metabolism dysregulation is closely implicated in tumorigenesis. However, the involvement of CPT2 in the progression of cancer is still largely unclear, especially in ovarian cancer (OC).MethodsIn the present study, CPT2 expression and its clinical significance were determined in OC tissues and cells. The biological functions and molecular mechanisms of CPT2 in OC growth and metastasis were determined by in vitro and in vivo assays.FindingsWe found that CPT2 was frequently down-regulated in primary ovarian serous carcinomas, which is significantly correlated with poor survival of ovarian cancer patients. Functional experiments revealed that CPT2 inhibited OC cell growth and metastasis via suppression of G1/S cell cycle transition and epithelial to mesenchymal transition (EMT), as well as induction of cell apoptosis. Mechanistically, suppression of ROS/NFκB signaling pathway by increasing fatty acid oxidation-derived NADPH production was involved in the anti-tumorigenic functions of CPT2 in OC cells.InterpretationAltogether, our findings demonstrate that CPT2 functions as a potential tumor suppressor in OC progression. CPT2 may serve as a novel prognostic marker and therapeutic target in OC.  相似文献   

5.
Lysophosphatidic acid (LPA) is a bioactive lipid that enhances ovarian cancer cell proliferation, migration and invasion in vitro and stimulates peritoneal metastasis in vivo. LPA is generated through the action of autotaxin or phospholipases, and degradation begins with lipid phosphate phosphohydrolase (LPP)-dependent removal of the phosphate. While the effects of LPA on ovarian cancer progression are clear, the effects of LPA metabolism within the tumor microenvironment on peritoneal metastasis have not been reported. We examined the contribution of lipid phosphatase activity to ovarian cancer peritoneal metastasis using mice deficient in LPP1 expression. Homozygous deletion of LPP1 (LPP1 KO) results in elevated levels and decreased turnover of LPA in vivo. Within 2 weeks of intraperitoneal injection of syngeneic mouse ovarian cancer cells, we observed enhanced tumor seeding in the LPP1 KO mice compared to wild type. However, tumor growth plateaued in the LPP1 KO mice by 3 weeks while tumors continued to grow in wild type mice. The decreased tumor burden was accompanied by increased apoptosis and no change in proliferation or angiogenesis. Tumor growth was restored and apoptosis reversed with exogenous administration of LPA. Together, these observations demonstrate that the elevated levels of LPA per se in LPP1 KO mice do not inhibit tumor growth. Rather, the data support the notion that either elevated LPA concentration or altered LPA metabolism affects other growth-promoting contributions of the tumor microenvironment.  相似文献   

6.
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.  相似文献   

7.
Chemokine CXCL12 and receptor CXCR4 have emerged as promising therapeutic targets for ovarian cancer, a disease that continues to have a dismal prognosis. CXCL12-CXCR4 signaling drives proliferation, survival, and invasion of ovarian cancer cells, leading to tumor growth and metastasis. Pleiotropic effects of CXCR4 in multiple key steps in ovarian cancer suggest that blocking this pathway will improve outcomes for patients with this disease. To quantify CXCL12-CXCR4 signaling in cell-based assays and living mouse models of ovarian cancer, we developed a click beetle red luciferase complementation reporter that detects activation of CXCR4 based on recruitment of the cytosolic adapter protein β-arrestin 2. Both in two-dimensional and three-dimensional cell cultures, we established that bioluminescence from this reporter measures CXCL12-dependent activation of CXCR4 and inhibition of this pathway with AMD3100, a clinically-approved small molecule that blocks CXCL12-CXCR4 binding. We used this imaging system to quantify CXCL12-CXCR4 signaling in a mouse model of metastatic ovarian cancer and showed that treatment with AMD3100 interrupted this pathway in vivo. Combination therapy with AMD3100 and cisplatin significantly decreased tumor burden in mice, although differences in overall survival were not significantly greater than treatment with either agent as monotherapy. These studies establish a molecular imaging reporter system for analyzing CXCL12-CXCR4 signaling in ovarian cancer, which can be used to investigate biology and therapeutic targeting of this pathway in cell-based assays and living mice.  相似文献   

8.
Ovarian cancer is a common cause of death among gynecological cancers. Although ovarian cancer initially responds to chemotherapy, frequent recurrence in patients remains a therapeutic challenge. Pyruvate kinase M2 (PKM2) plays a pivotal role in regulating cancer cell survival. However, its therapeutic role remains unclear. Here, we investigated the anticancer effects of compound 3K, a specific PKM2 inhibitor, on the regulation of autophagic and apoptotic pathways in SK-OV-3 (PKM2-overexpressing human ovarian adenocarcinoma cell line). The anticancer effect of compound 3K was examined using MTT and colony formation assays in SK-OV-3 cells. PKM2 expression was positively correlated with the severity of the tumor, and expression of pro-apoptotic proteins increased in SK-OV-3 cells following compound 3K treatment. Compound 3K induced AMPK activation, which was accompanied by mTOR inhibition. Additionally, this compound inhibited glycolysis, resulting in reduced proliferation of SK-OV-3 cells. Compound 3K treatment suppressed tumor progression in an in vivo xenograft model. Our findings suggest that the inhibition of PKM2 by compound 3K affected the Warburg effect and induced autophagic cell death. Therefore, use of specific PKM2 inhibitors to block the glycolytic pathway and target cancer cell metabolism represents a promising therapeutic approach for treating PKM2-overexpressing ovarian cancer.  相似文献   

9.
It is still a big puzzle how ovarian cancer cells and the tumor microenvironment (TME) attract lymphocytes infiltration for facilitating metastasis, a leading cause of death from gynecological malignancies. Using genome-wide LncRNA microarray assay, here we report that a LncRNA associated with ovarian cancer metastasis (LncOVM) is highly correlated with poor prognosis and survival. LncOVM interacts with and stabilizes PPIP5K2 by suppressing ubiquitinated degradation to promote complement C5 secretion from ovarian cancer cells. The TME-enriched complement C5 attracts myeloid-derived suppressor cells (MDSCs) infiltration in TME to facilitate metastasis. Knockdown of LncOVM or PPIP5K2 inhibits tumor progression in xenograft models. Application of C5aR antibody or inhibitor (CCX168) inhibits MDSC recruitment and restores the suppression of tumorigenesis and metastasis in vivo. Our study reveals that suppression of ovarian cancer metastasis can be achieved by targeting MDSC infiltration in TME through disrupting LncOVM-PPIP5K2-complement axis, providing an option for treating ovarian cancer patients.  相似文献   

10.
Long non-coding RNAs (lncRNAs) have been reported to be of great importance in tumorigenesis and progression of a variety of cancers. However, the role of lncRNAs in ovarian cancer (OC) remains largely unknown. In the present study, we identified a novel lncRNA, LOC100288181 (named as Lnc-OC1), which acted as a key regulator in the development and progression of OC. The combined Gene Expression Omnibus (GEO) database analysis revealed that Lnc-OC1 was significantly upregulated in OC tissues and Kaplan-Meier survival analysis confirmed that high Lnc-OC1 expression was associated with poor prognosis of OC patients. Importantly, we also demonstrated that knockdown of Lnc-OC1 suppressed cell proliferation, colony formation, invasion and migration in vitro and inhibited tumorigenicity in vivo. Mechanistically, Lnc-OC1 repressed the expression of endogenous miR-34a and miR-34c as a sponge and vice versa. Moreover, rescue experiments demonstrated that the oncogenic function of Lnc-OC1 at least partially depended on suppressing miR-34a and miR-34c. In conclusion, our results suggest that the Lnc-OC1-miR-34a/34c axis may play a pivotal role in OC, and may serve as a potential diagnostic biomarker and a powerful therapeutic target for OC.  相似文献   

11.
Background: The deubiquitinase OTUB1 plays critical oncogenic roles and facilitates tumor progression in cancer. However, less is known regarding the aberrant expression, clinical significance and biological functions of the non-coding RNA OTUB1-isoform 2. We aimed to evaluate the OTUB1-isoform 2 levels in gastric cancer and their possible correlation with clinicopathologic features and patient survival to reveal its biological effects in gastric cancer progression.Methods: Total RNA extraction was performed on 156 gastric cancer case samples, and RT-qPCR was conducted. Chi-square test analysis was used to calculate the correlation between pathological parameters and the OTUB1-isoform 2 mRNA levels. Kaplan-Meier and Cox proportional hazards analyses were used to analyze the overall survival (OS) and disease-free survival (DFS) rates. Nuclear and cytoplasmic RNAs were isolated to detect the subcellular localization of OTUB1-isoform 2. We also assessed whether overexpression of OTUB1-isoform 2 influenced in vitro cell proliferation, cell cycle progression, tumor cell invasion and migration, as well as in vivo nude mouse xenograft and metastasis models.Results: The OTUB1-isoform 2 expression levels were higher in the gastric cancer samples than in the paratumorous gland samples. OTUB1-isoform 2 expression levels tightly correlated with tumor size, lymph node metastasis and TNM staging. Higher OTUB1-isoform 2 expression levels led to significantly poorer OS and DFS rates, and a multivariate analysis revealed that OTUB1-isoform 2 was an independent risk factor for DFS. OTUB1-isoform 2 was predominantly localized in the cell nucleus. Ectopic overexpression of OTUB1-isoform 2 in gastric cancer cells stimulated proliferation by inducing G1-S transition, suppression of cell apoptosis and promotion of tumor cell invasion and migration. Finally, OTUB1-isoform 2 overexpression promoted tumor growth and tumor metastasis in nude mice models.Conclusions: Our study suggests that OTUB1-isoform 2 independently predicts poor prognosis and promotes tumor progression in gastric cancer. The non-coding RNA OTUB1-isoform 2 should be targeted in future molecular therapies.  相似文献   

12.
Recently, increasing attention has been paid to the role of Squalene epoxidase (SQLE) in several types of cancers. However, its functional role in tumor progression of head and neck squamous cell carcinoma (HNSCC) is still unclear. We performed bioinformatic analyses and relative experiments to assess the potential mechanism of SQLE-mediated HNSCC malignancy. And the results showed that SQLE was significantly upregulated in tumor samples compared with peritumor samples. Mechanistically, miR-584-5p downregulation may lead to the upregulation of SQLE in HNSCC. Moreover, high SQLE expression in HNSCC was associated with TNM stage, distant metastasis, and poor survival, indicating that SQLE be involved in the progression of HNSCC. Furtherly, SQLE boosted proliferation, migration, invasion of HNSCC cells in vitro and in vivo. Bioinformatic studies showed that PI3K/Akt signaling participated in HNSCC progression mediated by SQLE overexpression, which is confirmed by in vitro and in vivo analysis. Particularly, treatment with terbinafine, an inhibitor of SQLE widely used in the treatment of fungal infections, showed a therapeutic influence on HNSCC. Our findings demonstrate that SQLE plays a vital role in HNSCC progression, providing research evidence for SQLE as a prospective HNSCC therapeutic target and for terbinafine as a candidate drug of HNSCC treatment in the future  相似文献   

13.
14.
《Reproductive biology》2023,23(1):100704
Circular RNAs (circRNAs) have been reported to be implicated in the tumorigenesis and progression of ovarian cancer. Here, the study was designed to explore the activity of human circ_0021573 in ovarian cancer pathogenesis and its regulation through the competing endogenous RNA (ceRNA) crosstalk. Circ_0021573, microRNA (miR)? 936, and cullin 4B (CUL4B) were quantified by qRT-PCR and western blot. Cell proliferation ability was detected by XTT, 5-Ethynyl-2′-Deoxyuridine (EdU), and colony formation assays. Cell apoptosis, migration, and invasion were assessed by flow cytometry, wound-healing, and transwell assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to evaluate the direct relationship between miR-936 and circ_0021573 or CUL4B 3′UTR. Xenograft studies were applied to assess the role of circ_0021573 in tumor growth. Our data showed that circ_0021573 expression is enhanced in human ovarian cancer. Inhibition of circ_0021573 impedes cell proliferation, migration, and invasion and promotes apoptosis in vitro, as well as diminishes tumor growth in vivo. Mechanistically, circ_0021573 contains a miR-936 binding site, and miR-936 is a relevant mediator of circ_0021573 regulation. MiR-936 direct targets and inhibits CUL4B. MiR-936-mediated suppression of CUL4B hinders cell proliferation, migration, and invasion and accelerates apoptosis in vitro.. These data suggested that circ_0021573 might promote the malignant phenotypes of ovarian cancer cells by functioning as a ceRNA for miR-936 to induce CUL4B, which provided a promising target for the prevention and inhibition of ovarian cancer.  相似文献   

15.
OBJECTIVE: The ROR1 and ROR2 receptor tyrosine kinases have both been implicated in ovarian cancer progression and have been shown to drive migration and invasion. There is an increasing importance of the role of stroma in ovarian cancer metastasis; however, neither ROR1 nor ROR2 expression in tumor or stromal cells has been analyzed in the same clinical cohort. AIM: To determine ROR1 and ROR2 expression in ovarian cancer and surrounding microenvironment and examine associations with clinicopathological characteristics. METHODS: Immunohistochemistry for ROR1 and ROR2 was used to assess receptor expression in a cohort of epithelial ovarian cancer patients (n = 178). Results were analyzed in relation to clinical and histopathological characteristics and survival. Matched patient sample case studies of normal, primary, and metastatic lesions were used to examine ROR expression in relation to ovarian cancer progression. RESULTS: ROR1 and ROR2 are abnormally expressed in malignant ovarian epithelium and stroma. Higher ROR2 tumor expression was found in early-stage, low-grade endometrioid carcinomas. ROR2 stromal expression was highest in the serous subtype. In matched patient case studies, metastatic samples had higher expression of ROR2 in the stroma, and a recurrent sample had the highest expression of ROR2 in both tumor and stroma. CONCLUSION: ROR1 and ROR2 are expressed in tumor-associated stroma in all histological subtypes of ovarian cancer and hold potential as therapeutic targets which may disrupt tumor and stroma interactions.  相似文献   

16.
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, with typically extensive intraperitoneal implantation leading to poor prognosis. Our previous study preliminarily demonstrated β-hCG can promote tumorigenesis in immortalized nontumorigenic ovarian epithelial cells. In this study, the roles and mechanisms of β-hCG in regulating EOC proliferation and metastasis were thoroughly explored. First, histologically, β-hCG was aberrantly overexpressed in human EOC metastatic tissues, and significantly correlated with FIGO stage, tumor size, differentiation, histologic grade and high grade serous ovarian carcinoma (HGSOC) (P < 0.05). However, serologically, β-hCG expression showed no significant difference between EOC and nonmalignant ovarian patients. Second, β-hCG was confirmed to have no significant effects on EOC proliferation in vitro and in vivo, while β-hCG upregulation was proven to promote migration and invasion ability in ES-2 and OVCAR-3 cells in vitro (P < 0.05), and β-hCG downregulation in SKOV3 cells had the opposite effect. Moreover, more invadopodia protrusions, mitochondria accumulations and cytoskeletal rearrangements were observed in β-hCG-overexpressing ES-2 cells, while β-hCG-depleted SKOV3 cells produced the opposite effect. Furthermore, β-hCG was confirmed to clearly facilitate intraperitoneal metastasis in nude mouse orthotopic ovarian xenograft models. Importantly, these effects of β-hCG were mediated by activation of the ERK/MMP2 signaling pathway, independently of luteinizing hormone/chorionic gonadotropin receptor (LHCGR) presence, and inhibition the pathway with the p-ERK1/2 inhibitor SCH772984 significantly impaired the tumor-promoting effects induced by β-hCG. Collectively, these data provide new insight into the roles and mechanisms of β-hCG in regulating EOC metastasis through ERK/MMP2 signaling pathway and may become a new target for therapeutic intervention.  相似文献   

17.
The cancer/testis antigen lactate dehydrogenase-C4 (LDHC) is a specific isoenzyme of the LDH family that regulates invasion and metastasis in some malignancies; however, little is known regarding its role in progression of lung adenocarcinoma (LUAD). Thus, we investigated LDHC expression by immunohistochemistry, and analyzed its clinical significance in 88 LUAD specimens. The role and molecular mechanisms subserving LDHC in cellular proliferation, migration, and invasion were explored both in vitro and in vivo. As a result, we found that high LDHC expression was significantly correlated with clinicopathological features of aggressive LUAD and a poor prognosis. Overexpression of LDHC induced LUAD cells to produce lactate and ATP, increased their metastatic and invasive potential—, and accelerated xenograft tumor growth. We further demonstrated that overexpression of LDHC affected the expression of cell proliferation-related proteins (cyclin D1 and c-Myc) and epithelial-mesenchymal transition (EMT)-related proteins (MMP-2, MMP-9, E-cadherin, Vimentin, Twist, Slug, and Snail) both in vitro and in vivo. Finally, excessive activation of LDHC enhanced the phosphorylation levels of AKT and GSK-3β, revealing activation of the PI3K/Akt/GSK-3β oncogenic-signaling pathways. Treatment with a PI3K inhibitor reversed the effects of LDHC overexpression by inhibiting cellular proliferation, migration, and invasion, with diminished levels of p-Akt and p-GSK3β. PI3K inhibition also reversed cell proliferation-related and EMT-related proteins in LDHC-overexpressing A549 cells. In conclusion, LDHC promotes proliferation, migration, invasion, and EMT in LUAD cells via activation of the PI3K/Akt/GSK-3β pathway.  相似文献   

18.
EF24 is a curcumin analog that has improved anticancer activity over curcumin, but its therapeutic potential and mechanism of action is unknown, which is important to address as curcumin targets multiple signaling pathways. EF24 inhibits the NF-κB but not the JAK-STAT signaling pathway in DU145 human prostate cancer cells and B16 murine melanoma cells. EF24 induces apoptosis in these cells apparently by inhibiting miR-21 expression, and also enhances the expression of several miR-21 target genes, PTEN and PDCD4. EF24 treatment significantly suppressed the growth of DU145 prostate cancer xenografts in immunocompromised mice and resulted in tumor regression. EF24 enhanced the expression of the miR-21 target PTEN in DU145 tumor tissue, but suppressed the expression of markers of proliferating cells (cyclin D1 and Ki67). In syngeneic mice injected with B16 cells, EF24 treatment inhibited the formation of lung metastasis, prolonged animal survival, inhibited miR-21 expression and increased the expression of miR-21 target genes. Expression profiling of miRNAs regulated by EF24 in vitro and in vivo showed that the antitumor activity of EF24 reflected the enhanced expression of potential tumor suppressor miRNAs as well as the suppressed expression of oncogenic miRNAs, including miR-21. Taken together, our data suggest that EF24 is a potent anticancer agent and selectively targets NF-κB signaling and miRNA expression, indicating that EF24 has significant potential as a therapeutic agent in various cancers.  相似文献   

19.
Epithelial ovarian cancer (EOC) is the most lethal of the gynecological malignancies. Exploring the molecular mechanisms and major factors of invasion and metastasis could have great significance for the treatment and prognosis of EOC. Studies have demonstrated that microRNA 106b (miR-106b) may be a promising therapeutic target for inhibiting breast cancer bone metastasis, but the role of miR-106b in EOC is largely unknown. In this work, miRNA-106b expression was quantified in various ovarian tissues and tumors. Ovarian carcinoma cell lines were transfected with miR-106b, after which, cell phenotype and expression of relevant molecules was assayed. Dual-luciferase reporter assays and xenograft mouse models were also used to investigate miR-106b and its target gene. MiR-106b mRNA expression was found to be significantly higher in normal ovarian tissues and benign tumors than in ovarian carcinomas and borderline tumors (p < 0.01), and was negatively associated with differentiation (Well vs. Por & Mod) and the International Federation of Gynecology and Obstetrics (FIGO) staging (stage I/II vs. stage III/IV) in ovarian carcinoma (p < 0.05). MiR-106b transfection reduced cell proliferation; promoted G1 or S arrest and apoptosis (p < 0.05); suppressed cell migration and invasion (p < 0.05); reduced Ras homolog gene family member C (RhoC), P70 ribosomal S6 kinase (P70S6K), Bcl-xL, Matrix metallopeptidase 2 (MMP2), MMP9 mRNA and protein expression; and induced p53 expression (p < 0.05). Dual-luciferase reporter assays indicated that miR-106b directly targets RhoC by binding its 3’UTR. MiR-106b transfection also suppressed tumor development and RhoC expression in vivo in xenograft mouse models. This is the first demonstration that miR-106b may inhibit tumorigenesis and progression of EOC by targeting RhoC. The involvement of miR-106b-mediated RhoC downregulation in EOC aggression may give extended insights into molecular mechanisms underlying cancer aggression. Approaches aimed at overexpressing miR-106b may serve as promising therapeutic strategies for treating EOC patients.  相似文献   

20.
目的:探讨Yes相关蛋白(YAP)与卵巢癌腹膜及淋巴结转移的相关性。方法:选择148例原发性卵巢癌和30例正常卵巢石蜡切片标本,采用Western blot、免疫组化分析YAP蛋白在正常卵巢组织、非转移性卵巢癌组织及转移性卵巢癌组织中的表达,分析YAP蛋白在卵巢癌组织中的表达与临床病理特征的关系,并应用单因素及多因素logistics分析卵巢癌腹膜和淋巴结转移的独立危险因素。结果:YAP蛋白在正常卵巢组织、非转移性卵巢癌组织及转移性卵巢癌组织中的表达量依次增高,两两比较差异均有统计学差异(P0.05)。YAP蛋白核过表达与组织学分化、残余病灶、复发、腹膜转移以及淋巴结转移均显著相关(P0.05)。YAP蛋白核过表达是独立的影响卵巢癌腹膜(OR:5.443;95%CI:2.287-12.950;P0.001)和淋巴结转移(OR:4.477;95%CI:2.059-9.735;P0.001)的独立危险因素。结论:YAP基因核过表达与卵巢癌腹膜转移及淋巴结转移密切相关,有可能作为临床上预测卵巢癌腹膜及淋巴结转移的新的分子标记物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号