首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Hepcidin is a circulating cysteine-rich peptide with antimicrobial properties. It functions as a hormonal regulator of iron homeostasis by controlling iron efflux from target cells via ferroportin (FPN1), which is internalized and degraded upon hepcidin binding. Because of its profound biomedical significance, hepcidin has become the target of intense biochemical studies. The aim of this study was to produce functional recombinant hepcidin in sufficient quantities for advanced research or potential clinical use, as the native hepcidin can be isolated from urine in very low yield. We report the expression, purification and functional characterization of hepcidin variants in yeast P. pastoris. The yield of untagged hepcidin 20- and 25-mer peptides was too low for complete functional characterization. By contrast, Hep20 and Hep25 tagged with either single 6xHis or double Myc-6xHis epitopes were expressed at high quantities (5-7mg/l of culture), yet mostly in oligomeric forms. Purification of monomeric tagged hepcidins was achieved by size exclusion chromatography, with a yield of 0.5-1mg/l of culture. All recombinant hepcidins exhibited bacteriostatic activity and the ability to control cellular iron homeostasis, with Hep25-His being the most potent. Thus, Hep25-His promoted an increase in the levels of the labile iron pool (LIP) in macrophages and consistently bound to ferroportin (FPN1) causing its internalization and the subsequent downregulation of transferrin receptor 1 (TfR1) expression. Analysis by mass-spectrometry suggested that all eight cysteines participated in disulfide bond formation. Our results suggest that only the recombinant Hep25-His monomer was a fully active peptide. As Hep25-His faithfully recapitulates the functional properties of native Hep25, it represents a powerful tool for biochemical studies and potential diagnostic and therapeutic applications.  相似文献   

2.
膜铁转运蛋白1,铁调素的靶分子?   总被引:2,自引:0,他引:2  
膜铁转运蛋白1是重要的跨膜铁输出分子,主要分布于十二指肠和单核巨噬系统的细胞膜上,参与机体的肠铁吸收和巨噬细胞对铁的再循环等过程。铁调素是调节机体铁代谢平衡的激素,机体通过肝脏分泌的铁调素对铁转运相关蛋白的表达进行调控,从而实现机体自身的铁稳态。最新研究显示,铁调素的靶分子可能是膜铁转运蛋白1,它通过直接的作用引起膜铁转运蛋白1的内化(internalization)、降解,从而调节其在细胞膜上的表达量,进而控制肠铁吸收和巨噬细胞对铁的再循环过程,以维持机体的铁稳态。  相似文献   

3.
4.
BackgroundImbalances in metal concentrations have been suggested to contribute to the pathophysiology of different brain disorders, such as bipolar disorder (BD) and schizophrenia (SCZ).ObjectivesThe aim of this exploratory study is to evaluate the association between the concentrations of macro/trace elements in serum from BD and SCZ patients considering the effects from different treatments.MethodsEleven subjects with SCZ, seven with BD treated with lithium (BDL) and eight subjects with BD treated with other medications except lithium (BDN) were recruited for the study, as well as eleven healthy controls (HC). Serum concentrations of eleven macro/trace elements (Se, Zn, Fe, K, Ca, Mg, P, Al, Cu, Mn, and Ni) were determined using inductively coupled plasma mass spectrometry (ICP-MS).ResultsSe and Zn concentrations were significantly lower for patients with SCZ and BD in comparison to HC by one-way ANOVA test. Moreover, serum concentrations for Fe were significantly higher (p < 0.05) in BDN (548 ± 92 μg L−1) and SCZ (632 ± 279 μg L−1) in comparison to HC (421 ± 121 μg L−1). A significant negative correlation was reported between Se and Fe in BDL group (r = −0.935, p < 0.05). In addition, a significantly higher Cu/Zn ratio was determined in SCZ group against HC (ratio = 2.4, p = 0.028).ConclusionsThe obtained results suggest that the imbalance in Fe concentrations is an effect of BD treatment. Lithium is supposed to have an antagonist effect for Se in BDL patients. A negative correlation reported between Fe and BMI in SCZ group could be related to antipsychotic treatment and the Cu/Zn ratio reported could be considered as a suggesting parameter to relate oxidative stress to SCZ. Future studies including larger number of patients with SCZ and BD before and after treatment are necessary to confirm the investigative results presented herein.  相似文献   

5.
Ferroportin (Fpn/IREG1/MTP1) is the only known transporter mediating iron efflux from epithelial cells and macrophages, and thus regulates how much iron is released into the circulation. Consequently, Fpn mutations are associated with haemochromatosis. Fpn itself is post-translationally regulated by hepcidin (Hepc) which induces its redistribution and degradation in a ubiquitin-dependent process. Together, the two proteins appear to be the nexus for iron homeostasis. Here we show that a rare gain-of-function mutation (K240E) that is associated with iron overload, impedes Fpn binding and subcellular trafficking by the small ubiquitin-like modifier (SUMO). Whereas wild-type Fpn is ensconced within vesicular bodies, the FpnK240E mutant appeared diffused within the cell when co-expressed with SUMO. Furthermore, compared with wild type Fpn, the sumoylation-defective mutant was constitutively-active, resulting in a lower intracellular labile iron pool than the former. These findings suggest that SUMO may regulate iron homeostasis by controlling Fpn trafficking.  相似文献   

6.
Ferroportin disease is a rare type of autosomal dominantly inherited hemochromatosis caused with mutations in the ferroportin gene (SLC40A1). The patients characteristically have hyperferritinemia but normal transferin saturations. Herein, we present a 15-year-old female whose chief complaint was persistent nausea for the last one year. Extensive work-up including brain imaging revealed nothing to explain the etiology of nausea. The serum ferritin level of 1474 ng/mL was suggestive for hemochromatosis syndromes and the molecular testing revealed de-novo c.485_487delTTG (P.Val162del) ferroportin gene mutation. Mild hepatic iron loading, in addition to the cumbersome nausea were accepted as indications for chelation treatment in this particular patient and deferasirox was initiated (10 mg/kg/day) since family did not consent for phlebotomy. Deferasirox was stopped by the 9th month of initiation, since nausea subsided and hepatic iron content was normalized, in order to prevent over chelation. There are no well-established guidelines for the chelation of patients with hereditary hemochromatosis syndromes. However, lifelong monitorization for iron loading and re-initiation of chelation when necessary was planned in our patient.  相似文献   

7.
Hepcidin is a 25-residue hepatic peptide that regulates iron absorption from the diet and tissue iron distribution. Inappropriately low Hepcidin expression is implicated in the pathogenesis of hereditary hemochromatosis and iron-loading anemias, like the thalassemias. Increased hepcidin expression mediates iron retention in the anemias of inflammation and plays a pathogenic role in iron-refractory iron-deficiency anemia (IRIDA). Because of its clinical importance, Hepcidin is expected to be a useful biomarker for diagnosis and management of iron-related disorders. So far an ELISA for human hepcidin and SELDI-TOF-MS based approaches have been applied to monitor urinary and/or serum hepcidin levels. Here we report a modified protocol for SELDI-TOF based detection of human, urinary hepcidin. We show that CM10 Proteinchips are superior to NP20 Proteinchips commonly used in previously reported protocols to sensitively and accurately detect urinary hepcidin. Application of this modified hepcidin assay accurately detects increased hepcidin levels in the urine of sepsis patients.  相似文献   

8.
Interacting signals in the control of hepcidin expression   总被引:2,自引:0,他引:2  
  相似文献   

9.
A simple compartmental model is developed for investigating the mechanism of iron homeostasis. In contrast to previous mathematical models of iron metabolism, the liver is included as a key site of iron regulation. Compartments for free iron in blood, diferric transferrin (Tf) in blood, hepatocytes, red blood cells, and macrophages are included, and their roles in iron regulation are explored. The function of hepcidin in regulating iron absorption is modeled through an inverse relationship between hepatocyte transferrin receptor 2 (TfR2) levels and the rate of iron export processes mediated by ferroportin (Fpn). Simulations of anemia and erythropoiesis stimulation support the idea that the iron demands of the erythroid compartment can be communicated through diferric Tf. The iron-responsive element of Fpn is found to be important for stabilizing intracellular iron stores in response to changing iron demands and allowing proper iron regulation through diferric Tf. The contribution of iron dysregulation to the pathogenesis of iron overload disorders is also investigated. It is shown that the characteristics of HFE hemochromatosis can be reproduced by increasing the setpoint of iron absorption in the duodenum to a level where the system cannot downregulate iron absorption to meet the iron excretion rate.  相似文献   

10.
Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays.  相似文献   

11.
Our knowledge of iron homeostasis has increased steadily over the last two decades; much of this has been made possible through the study of animal models of iron-related disease. Analysis of transgenic mice with deletions or perturbations in genes known to be involved in systemic or local regulation of iron metabolism has been particularly informative. The effect of these genes on iron accumulation and hepcidin regulation is traditionally compared with wildtype mice fed a high iron diet, most often a 2% carbonyl iron diet. Recent studies have indicated that a very high iron diet could be detrimental to the health of the mice and could potentially affect homeostasis of other metals, for example zinc and copper. We analyzed mice fed a diet containing either 0.25%, 0.5%, 1% or 2% carbonyl iron for two weeks and compared them with mice on a control diet. Our results indicate that a 0.25% carbonyl iron diet is sufficient to induce maximal hepatic hepcidin response. Importantly these results also demonstrate that in a chronic setting of iron administration, the amount of excess hepatic iron may not further influence hepcidin regulation and that expression of hepcidin plateaus at lower hepatic iron levels. These studies provide further insights into the regulation of this important hormone.  相似文献   

12.
BackgroundPerturbations in iron homeostasis have been reported to be associated with irreversible liver injury in chronic liver disease (CLD). However, it is not clear whether liver dysfunction per se underlies such dysregulation or whether other factors also contribute to it. This study attempted to examine the issues involved.MethodsPatients diagnosed to have chronic liver disease (n = 63), who underwent a medically-indicated upper gastrointestinal endoscopy, were the subjects of this study. Patients with dyspepsia, who underwent such a procedure, and were found to have no endoscopic abnormalities, were used as control subjects (n = 49). Duodenal mucosal samples were obtained to study mRNA and protein levels of duodenal proteins involved in iron absorption. A blood sample was also obtained for estimation of hematological, iron-related, inflammatory and liver function-related parameters.ResultsPatients with CLD had impaired liver function, anemia of inflammation and lower serum levels of hepcidin than control subjects. Gene (mRNA) expression levels of duodenal ferroportin and duodenal cytochrome b (proteins involved in iron absorption) were decreased, while that of divalent metal transporter–1 (DMT-1) was unchanged. Protein expression of DMT-1 was, however, decreased while that of ferroportin was unchanged. In the CLD group, serum hepcidin was predicted independently by serum ferritin and hemoglobin, but not by C-reactive protein (a marker of inflammation). CLD patients with serum ferritin greater than 300 μg/dL had significantly greater liver dysfunction (as indicated by significantly higher serum concentrations of bilirubin, AST and ALT, and MELD scores), higher serum concentrations of CRP and hepcidin, and higher ferroportin protein expression, than those with serum ferritin ≤ 300 μg/dL.ConclusionsIn patients with CLD, anemia of inflammation and low serum hepcidin levels were found to paradoxically co-exist. Expression of duodenal proteins involved in iron absorption were either decreased or unaltered in these patients. The hepcidin response to higher body iron levels and/or inflammation appeared to be functional in these patients, despite the presence of liver disease.  相似文献   

13.
Basing on the assumption that frontotemporal lobar degeneration (FTLD), schizophrenia and bipolar disorder (BPD) might share common aetiological mechanisms, we analyzed genetic variation in the FTLD risk gene progranulin (GRN) in a German population of patients with schizophrenia (n = 271) or BPD (n = 237) as compared with 574 age-, gender- and ethnicity-matched controls. Furthermore, we measured plasma progranulin levels in 26 German BPD patients as well as in 61 Italian BPD patients and 29 matched controls.A significantly decreased allelic frequency of the minor versus the wild-type allele was observed for rs2879096 (23.2 versus 34.2%, P<0.001, OR:0.63, 95%CI:0.49–0.80), rs4792938 (30.7 versus 39.7%, P = 0.005, OR: 0.70, 95%CI: 0.55–0.89) and rs5848 (30.3 versus 36.8, P = 0.007, OR: 0.71, 95%CI: 0.56–0.91). Mean±SEM progranulin plasma levels were significantly decreased in BPD patients, either Germans or Italians, as compared with controls (89.69±3.97 and 116.14±5.80 ng/ml, respectively, versus 180.81±18.39 ng/ml P<0.001) and were not correlated with age.In conclusion, GRN variability decreases the risk to develop BPD and schizophrenia, and progranulin plasma levels are significantly lower in BPD patients than in controls. Nevertheless, a larger replication analysis would be needed to confirm these preliminary results.  相似文献   

14.
Mutations of SLC40A1 encoding ferroportin (Fpn), the unique cellular iron exporter, severely affect iron homeostasis causing type 4 hereditary hemochromatosis, an autosomal dominant iron overload condition with variable phenotypic manifestations. This disease can be classified as type 4A, better known as “ferroportin disease”, which is due to “loss of function” mutations that lead to decreased iron export from cells, or as type 4B hemochromatosis, which is caused by “gain of function” mutations, conferring partial or complete resistance to hepcidin-mediated Fpn degradation.In this work, we discuss clinical and molecular findings on a group of patients in whom a SLC40A1 single copy missense variant was identified. Three novel variants, p.D181N, p.G204R and p.R296Q were functionally characterized. Fpn D181N and R296Q mutants can be classified as full or partial loss of function, respectively. Replacement of G204 with arginine appears to cause a more complex defect with impact both on iron export function and hepcidin sensitivity. This finding confirms the difficulty of predicting the effect of a mutation on the molecular properties of Fpn in order to provide an exhaustive explanation to the wide variability of the phenotype in type 4 hereditary hemochromatosis.  相似文献   

15.
Hepcidin is a peptide hormone that functions as a key regulator of mammalian iron metabolism. Serum and urine levels are increased in inflammation and suppressed in hemochromatosis, and they may have diagnostic importance. This study describes the development and validation of an analytical method for the quantitative determination of the concentration of hepcidin in clinical samples. A stable, isotopically labeled internal standard, [15N,13C2]Gly12,20-hepcidin, was synthesized and a standard quantity was added to urine samples. Extraction was performed using weak cation exchange magnetic nanoparticles. An ion trap mass spectrometer was used to quantify hepcidin in the samples. The hepcidin assay was validated, and good recovery of hepcidin was obtained. The assay is accurate and precise. Urinary hepcidin levels of 3 to 9 nmol/mmol creatinine−1 were found in healthy controls, with reduced levels in hemochromatosis (P < 0.00006) and elevated levels in inflammation (P < 0.00035). In sickle cell disease, a wide range was found, with the mean value not differing significantly from controls (P < 0.26). In summary, a validated method has been developed for the quantitation of hepcidin using a stable, isotopically labeled internal standard and applied to determine the concentrations of hepcidin in the low nanomolar range in urine samples from patients and controls.  相似文献   

16.
Increased concentrations of kynurenine pathway metabolites have been reported by several groups for disorders involving psychosis, including schizophrenia and bipolar disorder. To identify components of the pathway that may be relevant as biomarkers or may underlie the etiology of psychosis, it is essential to characterize the extent of kynurenine pathway activation and to investigate known regulators of one of the key kynurenine-producing enzymes, tryptophan 2,3-dioxygenase (TDO2), previously shown in this laboratory to be increased commensurate with kynurenine in postmortem anterior cingulate brain tissue from individuals with schizophrenia. Using this same anterior cingulate sample set from individuals with schizophrenia, bipolar disorder, depression and controls (N=12-14 per group), we measured the precursor of kynurenine and two downstream products. The precursor, tryptophan, was significantly increased only in the schizophrenia group (1.54-fold the mean control value, p=0.02), and through substrate-induced activation, may be one cause of the increased kynurenine and kynurenine metabolites. This finding for tryptophan differs from some, but not all, previous reports and methodological reasons for the discrepancies are discussed. A product of kynurenine metabolism, 3-OH-anthranilic acid was also significantly increased only in the schizophrenia group (1.68-fold the mean control value, p=0.03). 3-OH-anthranilic acid is a reactive species with cytotoxic properties, although the threshold for such effects is not known for neurons. Analysis of major pre- and post-mortem variables showed that none were confounding for these between-group experimental comparisons. Nicotinamide, a pathway end product, did not differ between groups but was associated with cause of death (suicide) within the bipolar group (p=0.03).  相似文献   

17.
To study the change of gene expression in the brain tissues of schizophrenia, we used the gene expression monitoring technology and compared two sets of pools each containing four RNA samples of frontal cortex that were randomly selected from the control or schizophrenia group. We found that the expression of two genes were commonly altered in four pairwise comparisons; the expression of DEAD-box protein p72 (p72) gene was increased and neuropeptide Y (NPY) gene expression was decreased in the schizophrenia group compared with the control group. To substantiate these results, we estimated their mRNA levels by the real time TaqMan method in the 15 samples of each frontal or temporal cortex of four matched groups of schizophrenia, bipolar disorder, major depression and normal controls. A statistically significant decrease was observed for NPY in the frontal, but not in the temporal cortex, in the schizophrenia group (P=0.003). A decrease was also observed in the frontal cortex of the bipolar disorder group (P=0.031). In contrast, p72 gene expression showed no significant difference among the four groups. In conclusion, by novel technology of DNA array and TaqMan PCR analyses, we found that neuropeptide Y mRNA levels were significantly reduced in the frontal cortex in both schizophrenia and bipolar disorder.  相似文献   

18.
Iron deficiency is a common micronutrient deficiency associated with metabolic changes in the levels of iron regulatory proteins, hepcidin and ferroportin. Studies have associated dysregulation of iron homeostasis to other secondary and life-threatening diseases including anaemia, neurodegeneration and metabolic diseases. Iron deficiency plays a critical role in epigenetic regulation by affecting the Fe2+/α-ketoglutarate-dependent demethylating enzymes, Ten Eleven Translocase 1–3 (TET 1–3) and Jumonji-C (JmjC) histone demethylase, which are involved in epigenetic erasure of the methylation marks on both DNA and histone tails, respectively. In this review, studies involving epigenetic effects of iron deficiency associated with dysregulation of TET 1–3 and JmjC histone demethylase enzyme activities on hepcidin/ferroportin axis are discussed.  相似文献   

19.
The BMP/SMAD4 pathway has major effects on liver hepcidin levels. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator (Bmper), a known regulator of BMP signaling, was found to be overexpressed at the mRNA and protein levels in liver of genetically hypotransferrinemic mice (Trf(hpx/hpx)). Soluble BMPER peptide inhibited BMP2- and BMP6-dependent hepcidin promoter activity in both HepG2 and HuH7 cells. These effects correlated with reduced cellular levels of pSMAD1/5/8. Addition of BMPER peptide to primary human hepatocytes abolished the BMP2-dependent increase in hepcidin mRNA, whereas injection of Bmper peptide into mice resulted in reduced liver hepcidin and increased serum iron levels. Thus Bmper may play an important role in suppressing hepcidin production in hypotransferrinemic mice.  相似文献   

20.
高泌乳素血症在精神分裂症患者中发生率高,主要原因为抗精神病药物和精神分裂症本身的作用。精神分裂症患者服用抗精神病药物后泌乳素水平较快升高,长期服用后泌乳素水平可能趋向于稳定甚至降低,但仍高于正常值。高泌乳素血症会导致肥胖等诸多不良后果。而精神分裂症患者服用抗精神病药物后另一常见的副反应是代谢相关不良反应,越来越多的研究开始关注兼顾治疗高泌乳素血症及肥胖、糖脂代谢异常的方法。溴隐亭、阿立哌唑及芍药甘草汤等中药具有一定的降低泌乳素水平的作用,但使用有限制性,且不能改善抗精神病药物所致代谢相关的不良反应。二甲双胍除了能改善糖脂代谢紊乱,还具有潜在的降泌乳素作用,对于同时有代谢异常如肥胖、糖脂代谢异常及高泌乳素血症的患者来说可能具有双重治疗效果,但其降泌乳素的疗效和剂量需要进一步的大样本临床研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号