首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine monophosphate-activated protein kinase (AMPK) has been considered as a promising drug target for its regulation in both glucose and lipid metabolism. Mogrol was originally identified from high throughput screening as a small molecule activator of AMPK subtype α2β1γ1. In order to enhance its potency on AMPK and summarize the structure-activity relationships, a series of mogrol derivatives were designed, synthesized and evaluated in pharmacological AMPK activation assays. The results showed that the amine derivatives at the 24-position can improve the potency. Among them, compounds 3 and 4 exhibited the best potency (EC50: 0.15 and 0.14 μM) which was 20 times more potent than mogrol (EC50: 3.0 μM).  相似文献   

2.
符毓夏  王磊  李典鹏 《广西植物》2016,36(11):1369-1375
罗汉果醇是罗汉果皂苷的苷元,有研究报道罗汉果皂苷V具有防癌抑癌作用。该研究采用噻唑蓝实验( MTT法)检测罗汉果醇对不同肿瘤细胞增殖的抑制情况,以及不同浓度的罗汉果醇对CNE1细胞的增殖抑制率;应用细胞克隆形成实验进一步验证罗汉果醇对CNE1细胞增殖的抑制作用;采用Annexin V/PI 双染法检测罗汉果醇对CNE1细胞凋亡的影响;以实时定量PCR技术检测罗汉果醇对CNE1细胞中Caspase-3、Sur-vivin、Bax和Bcl-2基因的mRNA 表达水平的影响。结果表明:罗汉果醇能显著抑制DU145、HepG2、A549、CNE1、CNE2细胞的增殖,其中对CNE1细胞增殖的抑制作用最为显著,并呈剂量依赖性,其半数抑制浓度IC50为(81.48±4.73)μmol·L-1;通过对CNE1细胞进一步的克隆形成实验,也验证了这一点;Annexin V/PI 双染法可见随着浓度的增加,凋亡比例增加;实时定量PCR技术检测显示罗汉果醇处理后,促凋亡基因Caspase-3、Bax的表达增加,抗凋亡基因Survivin、Bcl-2的表达减少。因此,罗汉果醇可能是通过促进Caspase-3、Bax等促凋亡基因和抑制Survivin、Bcl-2等抗凋亡基因的表达,来诱导肿瘤细胞凋亡,进而发挥抗肿瘤活性。  相似文献   

3.
BackgroundSafflower yellow (SY) is the main active ingredient of safflower, with various pharmacological effects such as anticoagulating, antioxidant, and anti-arthritis effects.PurposeTo investigate the anti-inflammatory and chondrocyte protecting role of SY, which subsequently leads to the inhibition of cartilage degradation.MethodsRat chondrocytes were stimulated with tumor necrosis factor α (TNF-α) with or without SY treatment. Following this, CCK-8 assay was performed to detect cytotoxicity. RT-qPCR, Western blotting, and immunofluorescence staining were used to detect the gene/protein expression of typical cartilage matrix genes and related inflammatory markers. Subsequently, EdU assay was used to evaluate cell proliferation. RNA sequencing, online target prediction, and molecular docking were performed to determine the possible molecular targets and pathways.ResultsThe results showed that SY restored the TNF-α-induced up-regulation of IL-1β, PTGS2, and MMP-13 and down-regulation of COL2A1 and ACAN. Furthermore, it recovered cell proliferation by suppressing TNF-α. Gene expression profiles identified 717 differentially expressed genes (DEGs) in the cells cultured with or without SY under TNF-α stimulation. After pathway enrichment, PI3K-Akt, TNF, Cytokine-cytokine receptor interaction, NF-κB, NOD-like receptor, and Chemokine signaling pathways were notably selected to highlight NFKBIA, CCL5, CCL2, IL6, and TNF as potential targets in osteoarthritis (OA). SY inhibited TNF-α-induced activation of NF-κB and endoplasmic reticulum (ER) stress by promoting AMPK phosphorylation along with SIRT1 expression. Further, SY reduced MMP-13 expression and targeted COX-2 for decreasing PGE2 release. In addition, anterior cruciate ligament transection-induced OA was ameliorated by local administration of SY.ConclusionThese results demonstrate that SY protects chondrocytes and inhibits inflammation by regulating the NF-κB/SIRT1/AMPK pathways and ER stress, thus preventing cartilage degeneration in OA.  相似文献   

4.
5.
AMP-activated kinase (AMPK) as a key controller in the regulation of whole-body energy homeostasis, plays an important role in protecting the body from metabolic diseases. Recently, improved glucose, lipid utility and increased insulin sensitivity were observed on several diabetic rodent models treated with crude mogrosides isolated from the fruit of Siraitia grosvenorii Swingle, but the precise active compounds responsible for the anti-diabetic activity of this plant have not been clearly identified. In our current work, acid hydrolysis of crude mogrosides provided five new cucurbitane triterpenoids (1-4, 8), along with three known ones (5-7). The main aglycone mogrol (7) and compounds 4 and 8 were found to be potent AMPK activators in the HepG2 cell line. This result suggested AMPK activation by the mogroside aglycones 7 and 8 was proved to contribute at least partially to the anti-hyperglycemic and anti-lipidemic properties in vivo of S. grosvenorii.  相似文献   

6.
BackgroundGegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium.PurposeThis study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models.MethodsAcute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4−/−) acute UC mice were also used in this study.ResultsGQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4−/− UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells.ConclusionsGQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.  相似文献   

7.
Toll-like receptors (TLRs) associate with adaptor molecules (MyD88, Mal/TIRAP, TRAM, and TRIF) to mediate signaling of host-microbial interaction. For instance, TLR4 utilizes the combination of both Mal/TIRAP-MyD88 (MyD88-dependent pathway) and TRAM-TRIF (MyD88-independent pathway). However, TLR5, the specific receptor for flagellin, is known to utilize only MyD88 to elicit inflammatory responses, and an involvement of other adaptor molecules has not been suggested in TLR5-dependent signaling. Here, we found that TRIF is involved in mediating TLR5-induced nuclear factor κB (NFκB) and mitogen-activated protein kinases (MAPKs), specifically JNK1/2 and ERK1/2, activation in intestinal epithelial cells. TLR5 activation by flagellin permits the physical interaction between TLR5 and TRIF in human colonic epithelial cells (NCM460), whereas TLR5 does not interact with TRAM upon flagellin stimulation. Both primary intestinal epithelial cells from TRIF-KO mice and TRIF-silenced NCM460 cells significantly reduced flagellin-induced NFκB (p105 and p65), JNK1/2, and ERK1/2 activation compared with control cells. However, p38 activation by flagellin was preserved in these TRIF-deficient cells. TRIF-KO intestinal epithelial cells exhibited substantially reduced inflammatory cytokine (keratinocyte-derived cytokine, macrophage inflammatory protein 3α, and IL-6) expression upon flagellin, whereas control cells from TRIF-WT mice showed robust cytokine expression by flagellin. Compare with TRIF-WT mice, TRIF-KO mice were resistant to in vivo intestinal inflammatory responses: flagellin-mediated exacerbation of colonic inflammation and dextran sulfate sodium-induced experimental colitis. We conclude that in addition to MyD88, TRIF mediates TLR5-dependent responses and, thereby regulates inflammatory responses elicited by flagellin/TLR5 engagement. Our findings suggest an important role of TRIF in regulating host-microbial communication via TLR5 in the gut epithelium.  相似文献   

8.
AimsTo further explore the anti-inflammatory properties of d-Limonene.Main methodsA rat model was used to compare evolution of TNBS (2,5,6-trinitrobenzene sulfonic acid)-induced colitis after oral feeding with d-Limonene compared to ibuprofen. Peripheral levels of TNF-α (Tumor Necrosis Factor alpha) were assessed in all animals. Cell cultures of fibroblasts and enterocytes were used to test the effect of d-Limonene respectively on TNFα-induced NF-κB (nuclear factor-kappa B) translocation and epithelial resistance. Finally, plasmatic inflammatory markers were examined in an observational study of diet supplementation with d-Limonene-containing orange peel extract (OPE) in humans.Key findingsAdministered per os at a dose of 10 mg/kg p.o., d-Limonene induced a significant reduction of intestinal inflammatory scores, comparable to that induced by ibuprofen. Moreover, d-Limonene-fed rats had significantly lowered serum concentrations of TNF-α compared to untreated TNBS-colitis rats. The anti-inflammatory effect of d-Limonene also involved inhibition of TNFα-induced NF-κB translocation in fibroblast cultures. The application of d-Limonene on colonic HT-29/B6 cell monolayers increased epithelial resistance. Finally, inflammatory markers, especially peripheral IL-6, markedly decreased upon OPE supplementation of elderly healthy subjects submitted or not to 56 days of dietary supplementation with OPE.SignificanceIn conclusion, d-Limonene indeed demonstrates significant anti-inflammatory effects both in vivo and in vitro. Protective effects on the epithelial barrier and decreased cytokines are involved, suggesting a beneficial role of d-Limonene as diet supplement in reducing inflammation.  相似文献   

9.
BackgroundAs a chronic inflammatory disease, ulcerative colitis (UC) is relevant to a rising risk of colorectal cancer. Dihydroberberine (DHBB), a natural occurring isoquinoline alkaloid with various bioactivities, was found in many plants including Coptis chinensis Franch. (Ranunculaceae), Phellodendron chinense Schneid. (Rutaceae), and Chelidonium majus L. (Papaveraceae). However, its protective effect on UC is sparsely dissected out.PurposeTo explore the protective role and underlying mechanism of DHBB on a model of colitis.MethodsAcute colitis model was established by gavage with 3% dextran sulfate sodium (DSS) for 8 days. Influence of DHBB on DSS-induced clinical symptoms and disease activity index (DAI) was monitored and analyzed. Pathological injury of colon tissues was examined by hematoxylin-eosin and Alcian blue staining. The expression of intestinal mucosal barrier function proteins, immune-inflammation related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR.ResultsDHBB treatment effectively alleviated DSS-induced UC by relieving clinical manifestations, DAI scores and pathological damage, which exerted similar beneficial effect to azathioprine (AZA), and better than berberine (BBR). In addition, DHBB significantly improved the gut barrier function through up-regulating the levels of tight junction proteins and mucins. Furthermore, DHBB dramatically ameliorated colonic immune-inflammation state, which was related to the decrease of colonic pro-inflammatory cytokines and immunoglobulin through blocking TLR4/MyD88/NF-κB signal pathway.ConclusionThese results demonstrated that DHBB exerted a significant protective effect on DSS-induced experimental UC, at least partly through suppressing immune-inflammatory response and maintaining gut barrier function.  相似文献   

10.
BackgroundTriptolide is naturally isolated from Tripterygium wilfordii Hook F., possessing multiple biological activities. Hepatotoxicity is one of the main side effects of triptolide. However, the effect of triptolide on nonalcoholic fatty liver disease remains unknown (NAFLD).PurposeThis study aimed to observe the amelioration of triptolide against NAFLD and investigate the engaged mechanism.MethodsTwo typical animal models of NAFLD, obese db/db mice and methionine/choline-deficient (MCD) diet-fed mice, were used. Hepatic steatosis, inflammation, and fibrosis were evaluated by H&E and Masson staining. Oil red O staining and lipid extraction analysis were used to detect fat content in mice livers. Expression of lipid metabolism, inflammatory and fibrogenic genes was also detected by Real-time PCR and Western blotting, respectively. Phosphoproteomics, molecular docking, and TR-FRET assay were performed to provide further insight into how triptolide improved NAFLD.ResultsIntraperitoneal injection of triptolide at a daily dose of 50 μg/kg significantly alleviated MCD diet-induced nonalcoholic steatohepatitis (NASH), but 100 μg/kg triptolide caused severe hepatotoxicity. Pathological staining confirmed low-dose triptolide treatment reducing hepatic lipid deposition, inflammation, and fibrosis in NASH. Serum biochemical analysis revealed a reduction in the level of liver enzymes and bilirubin. MCD also induced rising expression of typical genes and proteins related to fibrosis (fibronectin, α-SMA, collagens, TGF-β) and inflammation (ILs, TNF-α, MCP-1), which was suppressed by low-dose triptolide. Data from the proteomics/phosphoproteomics and TR-FRET assay indicated triptolide was a potential allosteric AMPK agonist to increase the phosphorylation on Thr172 residue, with the EC50 of 277.78 μM and 231.02 μM for AMPKα1 and AMPKα2, respectively. Moreover, triptolide exhibited an ability to activate AMPK and further led to increasing ACC1 phosphorylation in the liver. The positive results that triptolide ameliorated hepatic lipogenesis, fatty acid oxidation, and fibrosis of NAFLD via activating AMPK were further confirmed in db/db mice with 10-week intervention (50 μg/kg, i.v., twice a week).ConclusionThis study demonstrates that dose-related triptolide as an allosteric AMPK agonist has the potential to alleviate NAFLD without hepatotoxicity.  相似文献   

11.
BackgroundPatients with inflammatory bowel disease are at increased risks of developing ulcerative colitis-associated colorectal cancer (CAC). Vitexin can suppress the proliferation of colorectal carcinoma cells in vitro orin vivo. However, different from colorectal carcinoma, CAC is more consistent with the transformation from inflammation to cancer in clinical chronic IBD patients. Therefore, we aim to investigated that vitexin whether possess benefic effects on CAC mice.PurposeWe aimed to determine the beneficial effects of vitexin on CAC mice and reveal its underlying mechanism.MethodsThe mouse CAC model was induced by Azoxymethane and dextran sodium sulfate (AOM/DSS) and CAC mice were treated with vitexin. At the end of this study, inflammatory cytokines of IL-1β, IL-6, TNF-α, IL-10 as well as nitric oxide (NO) were detected by kits after long-term treatment of vitexin. Pathological changes and macrophage polarization were determined by H&E and immunofluorescence in adjacent noncancerous tissue and carcinomatous tissue respectively of CAC mice.ResultsOur results showed that oral administration of vitexin could significantly improve the clinical signs and symptoms of chronic colitis, relieve colon damage, regulate colonic inflammatory cytokines, as well as suppress tumor incidence and tumor burden. Interesting, vitexin caused a significant increase in serum level of NO and a higher content of NO in tumor tissue. In addition, vitexin significantly decreased M1 phenotype macrophages in the adjacent noncancerous tissue, while markedly up-regulated M1 macrophage polarization in the tumor tissue in the colon of CAC mice.ConclusionVitexin can attenuate chronic colitis-associated carcinogenesis induced by AOM/DSS in mice and its protective effects are partly associated with its alternations in macrophage polarization in the inflammatory and tumor microenvironment .  相似文献   

12.
This study aims to explore the protective effects of Picroside III, an active ingredient of Picrorhiza scrophulariiflora, on the intestinal epithelial barrier in tumor necrosis factor-α (TNF-α) induced Caco-2 cells and dextran sulfate sodium (DSS) induced colitis in mice. Results show that Picroside III significantly alleviated clinical signs of colitis including body weight loss, disease activity index increase, colon shortening, and colon tissue damage. It also increased claudin-3, ZO-1 and occludin expressions and decreased claudin-2 expression in the colon tissues of mice with colitis. In vitro, Picroside III also significantly promoted wound healing, decreased the permeability of cell monolayer, upregulated the expressions of claudin-3, ZO-1 and occludin and downregulated the expression of claudin-2 in TNF-α treated Caco-2 cells. Mechanism studies show that Picroside III significantly promoted AMP-activated protein kinase (AMPK) phosphorylation in vitro and in vivo, and blockade with AMPK could significantly attenuate the upregulation of Picroside III in ZO-1 and occludin expressions and the downregulation of claudin-2 expression in TNF-α treated Caco-2 cells. In conclusion, this study demonstrates that Picroside III attenuated DSS-induced colitis by promoting colonic mucosal wound healing and epithelial barrier function recovery via the activation of AMPK.  相似文献   

13.
IntroductionAMP-activated protein kinase (AMPK) is a drug target for treatment of metabolic and cardiovascular complications. Extracts of Gentianaceace plants exhibit anti-diabetic and anti-atherosclerotic effects, however, whether their phyto-constitutents activate AMPK remains to be determined.MethodsMolecular docking of Gentiana lutea constituents was performed with crystal structure of human α2β1γ1 trimeric AMPK (PDB ID: 4CFE). Binding of Amarogentin (AG) to α2 subunit was confirmed through isothermal titration calorimetry (ITC) and in vitro kinase assays were performed. L6 myotube, HUH7 and endothelial cell cultures were employed to validate in silico and in vitro observations. Lipid lowering and anti-atherosclerotic effects were confirmed in streptozotocin induced diabetic mice via biochemical measurements and through heamatoxylin and eosin, Masson's trichrome and Oil Red O staining.ResultsAG interacts with the α2 subunit of AMPK and activates the trimeric kinase with an EC50 value of 277 pM. In cell culture experiments, AG induced phosphorylation of AMPK as well as its downstream targets, acetyl-coA-carboxylase (ACC) and endothelial nitric oxide synthase (eNOS). Additionally, it enhanced glucose uptake in myotubes and blocked TNF-α induced endothelial inflammation. Oral supplementation of AG significantly attenuated diabetes-mediated neointimal thickening, and collagen and lipid deposition in the aorta. It also improved circulating levels of lipids and liver function in diabetic mice.ConclusionIn conclusion, AG exerts beneficial vasculo-metabolic effects by activating AMPK.General significanceAmarogentin, a naturally occurring secoiridoid glycoside, is a promising lead for design and synthesis of novel drugs for treatment and management of dyslipidemia and cardiovascular diseases.  相似文献   

14.
AimsJoint inflammation leads to bone erosion in rheumatoid arthritis (RA), whereas it induces new bone formation in spondyloarthropathies (SpAs). Our aims were to clarify the effects of tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) on osteoblast differentiation and mineralization in human mesenchymal stem cells (MSCs).Main methodsIn MSCs, expression of osteoblast markers was assessed by real-time PCR and ELISA. Activity of tissue-nonspecific alkaline phosphatase (TNAP) and mineralization were determined by the method of Lowry and alizarin red staining respectively. Involvement of RUNX2 in cytokine effects was investigated in osteoblast-like cells transfected with a dominant negative construct.Key findingsTNF-α (from 0.1 to 10 ng/ml) and IL-1β (from 0.1 to 1 ng/ml) stimulated TNAP activity and mineralization in MSCs. Addition of 50 ng/ml of IL-1 receptor antagonist in TNF-α-treated cultures did not reverse TNF-α effects, indicating that IL-1 was not involved in TNF-α-stimulated TNAP activity. Both TNF-α and IL-1β decreased RUNX2 expression and osteocalcin secretion, suggesting that RUNX2 was not involved in mineralization. This hypothesis was confirmed in osteoblast-like cells expressing a dominant negative RUNX2, in which TNAP expression and activity were not reduced. Finally, since mineralization may merely rely on increased TNAP activity in a collagen-rich tissue, we investigated cytokine effects on collagen expression, and observed that cytokines decreased collagen expression in osteoblasts from MSC cultures.SignificanceThe different effects of cytokines on TNAP activity and collagen expression may therefore help explain why inflammation decreases bone formation in RA whereas it induces ectopic ossification from collagen-rich entheses during SpAs.  相似文献   

15.
16.
17.
18.
Lu PP  Liu JT  Liu N  Guo F  Ji YY  Pang X 《Life sciences》2011,88(19-20):839-845
AimsAtherosclerosis is a chronic inflammatory response of the arterial wall to multiple endothelial injuries. As one of the inflammatory markers, fibrinogen has been implicated in pathogenesis of atherosclerosis. But, it is not completely understood whether atherogenesis of fibrinogen is related to its pro-inflammatory effect on vascular smooth muscle cells (VSMCs). The purpose of the present study was to observe effects of fibrinogen and fibrin degradation products (FDP) on interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS) generation in rat VSMCs.Main methodsRat VSMCs were cultured, and fibrinogen and FDP were used as stimulants for IL-6, TNF-α, and iNOS. IL-6 and TNF-α level in the supernatant were measured by ELISA, mRNA expression of IL-6, TNF-α, and iNOS were assayed with RT-PCR, and protein expression of iNOS was detected with western blot and immunocytochemistry.Key findingsFibrinogen and FDP both significantly stimulated mRNA and protein expressions of IL-6, TNF-α and iNOS in VSMCs in time- and concentration-dependent ways. The pro-inflammatory potency of FDP is higher than fibrinogen, which seems to mean that smaller fragments of the protein have greater pro-inflammatory activity. Fibrinogen and FDP promote more protein expressions of IL-6 and TNF-α compared to iNOS, suggesting that fibrinogen and FDP produce a pro-inflammatory effect on VSMCs mainly by IL-6 and TNF-α.SignificanceThese findings are helpful to better understand pro-inflammatory effect of fibrinogen on VSMCs involved in atherogenesis, and imply a therapeutic strategy targeting hyperfibrinogenemia in atherosclerosis.  相似文献   

19.
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid with beneficial effects in obesity and insulin resistance. High levels of proinflammatory cytokine tumour necrosis factor-α (TNF-α) in obesity promote lipolysis in adipocytes, leading to the development of insulin resistance. Thus, the aims of the present study were to analyze the potential antilipolytic properties of EPA on cytokine-induced lipolysis and to investigate the possible mechanisms involved. The EPA effects on basal and TNF-α-induced lipolysis were determined in both primary rat and 3T3-L1 adipocytes. Treatment of primary rat adipocytes with EPA (100 and 200 μM) significantly decreased basal glycerol release (P<.01) and prevented cytokine-induced lipolysis in a dose-dependent manner (P<.001). Moreover, EPA decreased TNF-α-induced activation of nuclear factor-κB and extracellular-related kinase 1/2 phosphorylation. In addition, the antilipolytic action of EPA was stimulated by the AMP-kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-b-d-ribofuranoside and blocked by the AMPK-inhibitor compound C. Moreover, we found that EPA stimulated hormone-sensitive lipase (HSL) phosphorylation on serine-565, which further supports the involvement of AMPK in EPA's antilipolytic actions. Eicosapentaenoic acid treatment (24 h), alone and in the presence of TNF-α,? also decreased adipose triglyceride lipase (ATGL) protein content in cultured adipocytes. However, oral supplementation with EPA for 35 days was able to partially reverse the down-regulation of HSL and ATGL messenger RNA observed in retroperitoneal adipose tissue of high-fat-diet-fed rats. These findings suggest that EPA inhibits proinflammatory cytokine-induced lipolysis in adipocytes. This effect might contribute to explain the insulin-sensitizing properties of EPA.  相似文献   

20.
ObjectiveObesity and its consequences are among the biggest challenges facing the healthcare system. Uterine leiomyomas are the most common gynecologic tumors. The risk of leiomyoma increases with obesity, but the underlying mechanisms of this association remain unclear. The aim of the present study to determine the cellular and molecular mechanisms by which adipocyte contributes to both leiomyoma tumor initiation and promotion.MethodsPrimary myometrium and leiomyoma cells were isolated from patients who underwent a hysterectomy or myomectomy. Pro-inflammatory, fibrotic, and angiogenic factors were measured using a multiplex cytokine array in human primary and immortalized myometrial and leiomyoma cells cocultured with human adipocyte (SW872) cells, or in animal ELT3 leiomyoma cells cocultured with 3 T3-L1 adipocytes. The free fatty acids (FFAs) and fatty acid-binding protein 4 (FABP4) levels were measured using immunofluorescence assays. Other protein abundances were determined using western blots. The expression levels of TNF-α, MCP-1, phospho-NF-κB, TGFβ3 and VEGF-A in lean and obese in different leiomyoma patients were determined by immunofluorescence staining.ResultsAdipocytes promote inflammation, fibrosis, and angiogenesis in uterine leiomyoma cells by upregulating associated factors, such as IL-1β, TNF-α, MCP-1, GM-CSF, TGF-βs, PLGF, VEGF, HB-EGF, G-CSF and FGF2. Coculture led to the transfer of FFAs and FABP4 from adipocytes to leiomyoma cells, suggesting that adipocytes may modulate metabolic activity in these tumor cells. Increased levels of FFA and FABP4 expressions were detected in obese leiomyoma tissue compared to lean. The adipocyte–leiomyoma cell interaction increased the phospho-NF-κB level, which plays a key role in inflammation, restructuring metabolic pathways, and angiogenesis. Obese leiomyoma patients expressed a higher amount of TNF-α, MCP-1, phospho-NF-κB, TGFβ3 and VEGF-A than lean leiomyoma patients, consistent with in vitro findings. Furthermore, we found that adipocyte secretory factors enhance leiomyoma cell proliferation by increasing PCNA abundance. Finally, the inhibition of the inflammatory factors TNF-α, MCP-1, and NF-κB abrogated the adipocyte coculture-induced proliferation of leiomyoma cells.ConclusionsAdipocytes release inflammatory, fibrotic, and angiogenic factors, along with FFAs, which contribute to a tumor-friendly microenvironment that may promote leiomyoma growth and can represent a new target for leiomyoma prevention and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号