首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six pigeons discriminated on discrete trials between two colors. In Experiment 1, two luminous spots were both either blue or green and the reinforced responses were “peck left” for blue and “peck right” for green. In Experiment 2, the hue of a center spot controlled subsequent choice pecks to left or right. In both experiments response bias was manipulated in two ways. During stimulus frequency (“SF”) sessions correct responses brought food on 40% of trials; in “imbalanced” blocks of sessions one hue appeared on 80% of trials and the other on 20%. During reinforcement probability (“RNF”) sessions the hues appeared equally often, but in imbalanced blocks the hues signaled different reinforcement probabilities, either 64% or 16%. In “balanced” control blocks the hues appeared equally often and were both reinforced at 40%. The experiments gave similar results. When bias was computed from choice percentages the imbalanced conditions yielded substantial response bias, and the amount of bias was about the same under RNF and SF treatments. However, reaction times (RTs) gave a different outcome. RNF imbalance slowed responses directed at the less reinforced stimulus, but SF imbalance had little RT effect (Experiment 1) or no effect (Experiment 2). These results suggest that choice was controlled by an instrumental stimulus-response-reinforcement association, whereas RTs were controlled by a Pavlovian stimulus-reinforcement association.  相似文献   

2.
Inhibition of return (IOR) is an attentional mechanism that previously has been reported to be either intact or blunted in subjects with schizophrenia (SCZ). In the present study, we explored the neural mechanism of IOR in SCZ by comparing the target-locked N1 and P1 activity evoked by valid-cued trials with that evoked by invalid-cued trials. Twenty-seven schizophrenia patients and nineteen healthy controls participated in a task involving covert orienting of attention with two stimulus onset asynchronies (SOAs: 700 ms and 1200 ms) during which 64-channel EEG data were recorded. Behavioral reaction times (RTs) were longer in response to valid-cued trials than to invalid-cued ones, suggesting an intact IOR in SCZ. However, reduced N1 amplitude elicited by valid-cued trials suggested a stronger inhibition of attention from being oriented to a previously cued location, and therefore a relative inhibition of perceptual processing at that location in SCZ. These results indicate that altered N1 activity is associated with the preservation of IOR in SCZ and could be a sensitive marker to track the IOR effect.  相似文献   

3.
Pigeons discriminated the hue of a spot of light that appeared in discrete trials. A green spot always signaled food ("green S+") and so did a red spot of constant hue ("red S+"), but on most trials a different red hue appeared and no food was given for pecks ("red S-"). The hue of red S- stayed the same during blocks of up to twelve sessions, but it changed from block to block. During a final group of sessions red S- was omitted and the percent reinforcement to the two S+ stimuli was varied. Major findings were that (1) percent response (Pct(R)) to S- varied with S+/S- similarity, describing a typical ogival psychometric function; (2) Reaction times (RTs) to both red and green S+s were minimal when the red discrimination was impossible (that is, when red S+ and S- were identical); (3) RTs to red S+ were greatest during discriminations of intermediate difficulty; (4) as Pct(R) declined during the learning of a difficult discrimination, RTs increased to red S+ as well as red S-. Most aspects of the data were reproduced by simulations with a quantitative model that incorporated reinforcement-based decision and arousal processes.  相似文献   

4.
The underlying specificity of visual object categorization and discrimination can be elucidated by studying different types of repetition priming. Here we focused on this issue in face processing. We investigated category priming (i.e. the prime and target stimuli represent different exemplars of the same object category) and item priming (i.e. the prime and target stimuli are exactly the same image), using an immediate repetition paradigm. Twenty-three subjects were asked to respond as fast and accurately as possible to categorize whether the target stimulus was a face or a building image, but to ignore the prime stimulus. We recorded event-related potentials (ERPs) and reaction times (RTs) simultaneously. The RT data showed significant effects of category priming in both face trials and building trials, as well as a significant effect of item priming in face trials. With respect to the ERPs, in face trials, no priming effect was observed at the P100 stage, whereas a category priming effect emerged at the N170 stage, and an item priming effect at the P200 stage. In contrast, in building trials, priming effects occurred already at the P100 stage. Our results indicated that distinct neural mechanisms underlie separable kinds of immediate repetition priming in face processing.  相似文献   

5.
According to the conflict monitoring model of cognitive control, reaction time (RT) in distracter interference tasks (e.g., the Stroop task) is a more precise index of response conflict than stimulus congruency (incongruent vs. congruent). The model therefore predicts that RT should be a reliable predictor of activity in regions of the posterior medial frontal cortex (pMFC) that are posited to detect response conflict. In particular, pMFC activity should be (a) greater in slow-RT than in fast-RT trials within a given task condition (e.g., congruent) and (b) equivalent in RT-matched trials from different conditions (i.e., congruent and incongruent trials). Both of these effects have been observed in functional magnetic resonance imaging (MRI) studies of adults. However, neither effect was observed in a recent study of healthy youth, suggesting that (a) the model does not accurately describe the relationship between RT and pMFC activity in this population or (b) the recent study was characterized by high variability due to a relatively small sample size. To distinguish between these possibilities, we asked a relatively large group of healthy youth (n = 28) to perform a distracter interference task - the multi-source interference task (MSIT) - while we recorded their brain activity with functional MRI. In this relatively large sample, both of the model’s predictions were confirmed. We conclude that the model accurately describes the relationship between pMFC activity and RT in healthy youth, but that additional research is needed to determine whether processes unrelated to response conflict contribute to this relationship.  相似文献   

6.
Understanding the cognitive and neural processes that underlie human decision making requires the successful prediction of how, but also of when, people choose. Sequential sampling models (SSMs) have greatly advanced the decision sciences by assuming decisions to emerge from a bounded evidence accumulation process so that response times (RTs) become predictable. Here, we demonstrate a difficulty of SSMs that occurs when people are not forced to respond at once but are allowed to sample information sequentially: The decision maker might decide to delay the choice and terminate the accumulation process temporarily, a scenario not accounted for by the standard SSM approach. We developed several SSMs for predicting RTs from two independent samples of an electroencephalography (EEG) and a functional magnetic resonance imaging (fMRI) study. In these studies, participants bought or rejected fictitious stocks based on sequentially presented cues and were free to respond at any time. Standard SSM implementations did not describe RT distributions adequately. However, by adding a mechanism for postponing decisions to the model we obtained an accurate fit to the data. Time-frequency analysis of EEG data revealed alternating states of de- and increasing oscillatory power in beta-band frequencies (14–30 Hz), indicating that responses were repeatedly prepared and inhibited and thus lending further support for the existence of a decision not to decide. Finally, the extended model accounted for the results of an adapted version of our paradigm in which participants had to press a button for sampling more information. Our results show how computational modeling of decisions and RTs support a deeper understanding of the hidden dynamics in cognition.  相似文献   

7.
The presentation of a remote – but not proximal – distractor concurrent with target onset increases prosaccade reaction times (RT) (i.e., the remote distractor effect: RDE). The competitive integration model asserts that the RDE represents the time required to resolve the conflict for a common saccade threshold between target- and distractor-related saccade generating commands in the superior colliculus. To our knowledge however, no previous research has examined whether remote and proximal distractors differentially influence antisaccade RTs. This represents a notable question because antisaccades require decoupling of the spatial relations between stimulus and response (SR) and therefore provide a basis for determining whether the sensory- and/or motor-related features of a distractor influence response planning. Participants completed pro- and antisaccades in a target-only condition and conditions wherein the target was concurrently presented with a proximal or remote distractor. As expected, prosaccade RTs elicited a reliable RDE. In contrast, antisaccade RTs were increased independent of the distractor’s spatial location and the magnitude of the effect was comparable across each distractor location. Thus, distractor-related antisaccade RT costs are not accounted for by a competitive integration between conflicting saccade generating commands. Instead, we propose that a visual distractor increases uncertainty related to the evocation of the response-selection rule necessary for decoupling SR relations.  相似文献   

8.
This paper argues for a novel way of thinking about hallucinations as intensified forms of mind-wandering. Starting from the observation that hallucinations are associated with hyperactive sensory areas underlying the content of hallucinatory experiences and a confusion with regard to the reality of the source of these experiences, the paper first reviews the different factors that might contribute to the impairment of reality monitoring. The paper then focuses on the sensory characteristics determining the vividness of an experience, reviews their relationship to the sensory hyperactivity observed in hallucinations, and investigates under what circumstances they can drive reality judgements. Finally, based on these considerations, the paper presents its main proposal according to which hallucinations are intensified forms of mind-wandering that are amplified along their sensory characteristics, and sketches a possible model of what factors might determine if an internally and involuntarily generated perceptual representation is experienced as a hallucination or as an instance of mind-wandering.This article is part of the theme issue ‘Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation’.  相似文献   

9.
10.
This paper presents an experiment that explored the role of domain–general inhibitory control on language switching. Reaction times (RTs) and event–related brain potentials (ERPs) were recorded when low–proficient bilinguals with high and low inhibitory control (IC) switched between overt picture naming in both their L1 and L2. Results showed that the language switch costs of bilinguals with high–IC were symmetrical, while that of bilinguals with low–IC were not. The N2 component failed to show a significant interaction between group, language and task, indicating that inhibition may not comes into play during the language task schema competition phase. The late positive component (LPC), however, showed larger amplitudes for L2 repeat and switch trials than for L1 trials in the high–IC group, indicating that inhibition may play a key role during the lexical response selection phase. These findings suggest that domain–general inhibitory control plays an important role in modulating language switch costs and its influence can be specified in lexical selection phase.  相似文献   

11.
L Li  M Wang  QJ Zhao  N Fogelson 《PloS one》2012,7(7):e42233

Background

When switching from one task to a new one, reaction times are prolonged. This phenomenon is called switch cost (SC). Researchers have recently used several kinds of task-switching paradigms to uncover neural mechanisms underlying the SC. Task-set reconfiguration and passive dissipation of a previously relevant task-set have been reported to contribute to the cost of task switching.

Methodology/Principal Findings

An unpredictable cued task-switching paradigm was used, during which subjects were instructed to switch between a color and an orientation discrimination task. Electroencephalography (EEG) and behavioral measures were recorded in 14 subjects. Response-stimulus interval (RSI) and cue-stimulus interval (CSI) were manipulated with short and long intervals, respectively. Switch trials delayed reaction times (RTs) and increased error rates compared with repeat trials. The SC of RTs was smaller in the long CSI condition. For cue-locked waveforms, switch trials generated a larger parietal positive event-related potential (ERP), and a larger slow parietal positivity compared with repeat trials in the short and long CSI condition. Neural SC of cue-related ERP positivity was smaller in the long RSI condition. For stimulus-locked waveforms, a larger switch-related central negative ERP component was observed, and the neural SC of the ERP negativity was smaller in the long CSI. Results of standardized low resolution electromagnetic tomography (sLORETA) for both ERP positivity and negativity showed that switch trials evoked larger activation than repeat trials in dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC).

Conclusions/Significance

The results provide evidence that both RSI and CSI modulate the neural activities in the process of task-switching, but that these have a differential role during task-set reconfiguration and passive dissipation of a previously relevant task-set.  相似文献   

12.
Studies of human associative learning have often used causal/predictive learning preparations in which participants decide whether or not a first event is effective in causing or predicting a second event (i.e., an outcome). Those preparations have proved successful in replicating many Pavlovian phenomena. In the present paper we tested a novel associative learning preparation in which visually presented letters were paired with a visual outcome. Reaction times (RTs) were recorded to assess associative strength between specific cues and the outcome. Combining two different dependent variables (RTs and type of response given), we propose a rule for evaluating the associative strength between two events. The preparation and the data transformation rule were successful in producing several Pavlovian phenomena including excitatory acquisition, extinction, overshadowing, and latent inhibition, as well as established summation effects. Advantages and limitations of this new preparation based on the use of RT are discussed.  相似文献   

13.
The completion of an antisaccade selectively increases the reaction time (RT) of a subsequent prosaccade: a result that has been interpreted to reflect the residual inhibition of stimulus-driven saccade networks [1], [2]. In the present investigation we sought to determine whether the increase in prosaccade RT is contingent on the constituent antisaccade planning processes of response suppression and vector inversion or is limited to response suppression. To that end, in one block participants alternated between pro- and antisaccades after every second trial (task-switching block), and in another block participants completed a series of prosaccades that were randomly (and infrequently) interspersed with no-go catch-trials (go/no-go block). Notably, such a design provides a framework for disentangling whether response suppression and/or vector inversion delays the planning of subsequent prosaccades. As expected, results for the task-switching block showed that antisaccades selectively increased the RTs of subsequent prosaccades. In turn, results for the go/no-go block showed that prosaccade RTs were increased when preceded by a no-go catch-trial. Moreover, the magnitude of the RT ‘cost’ was equivalent across the task-switching and go/no-go blocks. That prosaccades preceded by an antisaccade or a no-go catch-trial produced equivalent RT costs indicates that the conjoint processes of response suppression and vector inversion do not drive the inhibition of saccade planning mechanisms. Rather, the present findings indicate that a general consequence of response suppression is a residual inhibition of stimulus-driven saccade networks.  相似文献   

14.
When experiencing resource competition or abrupt environmental change, animals often must transition rapidly from an ancestral diet to a novel, derived diet. Yet, little is known about the proximate mechanisms that mediate such rapid evolutionary transitions. Here, we investigated the role of diet-induced, cryptic genetic variation in facilitating the evolution of novel resource-use traits that are associated with a new feeding strategy—carnivory—in tadpoles of spadefoot toads (genus Spea). We specifically asked whether such variation in trophic morphology and fitness is present in Scaphiopus couchii, a species that serves as a proxy for ancestral Spea. We also asked whether corticosterone, a vertebrate hormone produced in response to environmental signals, mediates the expression of this variation. Specifically, we compared broad-sense heritabilities of tadpoles fed different diets or treated with exogenous corticosterone, and found that novel diets can expose cryptic genetic variation to selection, and that diet-induced hormones may play a role in revealing this variation. Our results therefore suggest that cryptic genetic variation may have enabled the evolutionary transition to carnivory in Spea tadpoles, and that such variation might generally facilitate rapid evolutionary transitions to novel diets.  相似文献   

15.
The results of the study on conjugate reaction time (RT) of hands (the time of simple mental reaction) of 16 patients with Parkinsonism, cerebral palsy, and spastic torticollis before and after surgery are presented. Conjugation of the left hand and right hand RTs to sound and light modality signals with a warning signal has been analyzed to detect the morphological structures that influence the conjugate reaction. In some of the patients, no disturbance of RT conjugation was shown; in other patients, the coefficient of correlation used for assessment of the left and right hand RT conjugation significantly changed. The coefficient of correlation between the left hand and right hand RTs decreased in response either to the sound signal or simultaneously to the sound and light signals. Disturbances of the conjugate hand reaction were observed in the case of ventral-lateral thalamotomy, subthalamotomy, and pallidotomy.  相似文献   

16.
The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.  相似文献   

17.

Background

Reaction time (RT) is one of the most widely used measures of performance in experimental psychology, yet relatively few fMRI studies have included trial-by-trial differences in RT as a predictor variable in their analyses. Using a multi-study approach, we investigated whether there are brain regions that show a general relationship between trial-by-trial RT variability and activation across a range of cognitive tasks.

Methodology/Principal Findings

The relation between trial-by-trial differences in RT and brain activation was modeled in five different fMRI datasets spanning a range of experimental tasks and stimulus modalities. Three main findings were identified. First, in a widely distributed set of gray and white matter regions, activation was delayed on trials with long RTs relative to short RTs, suggesting delayed initiation of underlying physiological processes. Second, in lateral and medial frontal regions, activation showed a “time-on-task” effect, increasing linearly as a function of RT. Finally, RT variability reliably modulated the BOLD signal not only in gray matter but also in diffuse regions of white matter.

Conclusions/Significance

The results highlight the importance of modeling trial-by-trial RT in fMRI analyses and raise the possibility that RT variability may provide a powerful probe for investigating the previously elusive white matter BOLD signal.  相似文献   

18.
19.
OBJECTIVE: To quantify the impact of duplicate data on estimates of efficacy. DESIGN: Systematic search for published full reports of randomised controlled trials investigating ondansetron''s effect on postoperative emesis. Abstracts were not considered. DATA SOURCES: Eighty four trials (11,980 patients receiving ondansetron) published between 1991 and September 1996. MAIN OUTCOME MEASURES: Percentage of duplicated trials and patient data. Estimation of antiemetic efficacy (prevention of emesis) of the most duplicated ondansetron regimen. Comparison between the efficacy of non-duplicated and duplicated data. RESULTS: Data from nine trials had been published in 14 further reports, duplicating data from 3335 patients receiving ondansetron; none used a clear cross reference. Intravenous ondansetron 4 mg versus placebo was investigated in 16 reports not subject to duplicate publication, three reports subject to duplicate publication, and six duplicates of those three reports. The number needed to treat to prevent vomiting within 24 hours was 9.5 (95% confidence interval 6.9 to 15) in the 16 non-duplicated reports and 3.9 (3.3 to 4.8) in the three reports which were duplicated (P < 0.00001). When these 19 were combined the number needed to treat was 6.4 (5.3 to 7.9). When all original and duplicate reports were combined (n = 25) the apparent number needed to treat improved to 4.9 (4.4 to 5.6). CONCLUSIONS: By searching systematically we found 17% of published full reports of randomised trials and 28% of the patient data were duplicated. Trials reporting greater treatment effect were significantly more likely to be duplicated. Inclusion of duplicated data in meta-analysis led to a 23% overestimation of ondansetron''s antiemetic efficacy.  相似文献   

20.
In response to eastbound transmeridian flights, which result in zeitgeber phase advance shifts, adaptation of the circadian system to the new time zone by phase delays and advances are observed. The delay response to an advance zeitgeber shift has been called an antidromic response. For the shift at which the transition from an advance to an antidromic response occurs, the term critical shift is introduced.

For the study of critical shifts, a flight experiment across nine time zones and numerical simulations of a van der Pol equation have been evaluated. The interest is focussed on the determination of a range for critical abrupt shifts. An abrupt shift means that the ensemble of zeitgebers including geophysical zeitgebers and the rest-activity cycle is shifted immediately in the new time zone. The range of critical advance shifts has been estimated to reach from + 7 to + 10 hr. In the literature, results were reported which would imply a much wider range. The discussion of these observations shows that the actual shifts were presumably not abrupt in the quoted experiments.

The consequences of critical shifts for jet lag symptoms are investigated. If reduced circadian amplitudes and long times taken for the resynchronization contribute to the feeling of jet lag, the symptoms will be worst for shifts close to the critical one, as numerical simulations revealed. Manipulations of such shifts with the aim to alleviate jet lag are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号