首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Wang  M M Rasenick 《Biochemistry》1991,30(45):10957-10965
It has been suggested that elements of the cytoskeleton contribute to the signal transduction process and that they do so in association with one or more members of the signal-transducing G protein family. Relatively high-affinity binding between dimeric tubulin and the alpha subunits of Gs and Gi1 has also been reported. Tubulin molecules, which exist in solution as alpha beta dimers, have binding domains for microtubule-associated proteins as well as for other tubulin dimers. This study represents an attempt to ascertain whether the association between G proteins and tubulin occurs at one of these sites. Removal of the binding site for MAP2 and tau from tubulin by subtilisin proteolysis did not influence the association of tubulin with G protein, as demonstrated in overlay studies with [125I]tubulin. A functional consequence of that association, the stable inhibition of synaptic membrane adenylyl cyclase, was also unaffected by subtilisin treatment of tubulin. However, ring structures formed from subtilisin-treated tubulin were incapable of effecting such inhibition. Stable G protein-tubulin complexes were formed, and these were separated from free tubulin by Octyl-Sepharose chromatography. Using this methodology, it was demonstrated that assembled microtubules bound G protein quite weakly compared with tubulin dimers. The alpha subunit of Gi1 and, to a lesser extent, that of Go were demonstrated to inhibit microtubule polymerization. In aggregate, these data suggest that dimeric tubulin binds to the alpha subunits of G protein at the sites where it binds to other tubulin dimers during microtubule polymerization. Interaction with signal-transducing G proteins, thus, might represent a role for tubulin dimers which is independent of microtubule formation.  相似文献   

2.
The microtubule cytoskeleton plays an important role in eukaryotic cells, e. g., in cell movement or morphogenesis. Microtubules, formed by assembly of tubulin dimers, are dynamic polymers changing randomly between periods of growing and shortening, a property known as dynamic instability. Another process characterizing the dynamic behaviour is the so-called treadmilling due to different binding constants of tubulin at both microtubule ends. In this study, we used tetramethylrhodamine (TMR)-labeled tubulin added to microtubule suspensions to determine the net exchange rate (NER) of tubulin dimers by fluorescence correlation spectroscopy (FCS) as a measure for microtubule dynamics. This approach, which seems to be suitable as a screening system to detect compounds influencing the NER of tubulin dimers into microtubules at steady-state, showed that taxol, nocodazole, colchicine, and vinblastine affect microtubule dynamics at concentrations as low as 10(-9)-10(-10) M.  相似文献   

3.
Microtubule assembly from purified tubulin preparations involves both microtubule nucleation and elongation. Whereas elongation is well documented, microtubule nucleation remains poorly understood because of difficulties in isolating molecular intermediates between tubulin dimers and microtubules. Based on kinetic studies, we have previously proposed that the basic building blocks of microtubule nuclei are persistent tubulin oligomers, present at the onset of tubulin assembly. Here we have tested this model directly by isolating nucleation-competent cross-linked tubulin oligomers. We show that such oligomers are composed of 10-15 laterally associated tubulin dimers. In the presence of added free tubulin dimers, several oligomers combine to form microtubule nuclei competent for elongation. We provide evidence that these nuclei have heterogeneous structures, indicating unexpected flexibility in nucleation pathways. Our results suggest that microtubule nucleation in purified tubulin solution is mechanistically similar to that templated by gamma-tubulin ring complexes with the exception that in the absence of gamma-tubulin complexes the production of productive microtubule seeds from tubulin oligomers involves trial and error and a selection process.  相似文献   

4.
Microtubules are dynamic polymers with central roles in the mitotic checkpoint, mitotic spindle assembly, and chromosome segregation. Agents that block mitotic progression and cell proliferation by interfering with microtubule dynamics (microtubule-targeted tubulin-polymerizing agents (MTPAs)) are powerful antitumor agents. Effects of MTPAs (e.g. paclitaxel) on microtubule dynamics have not yet been directly demonstrated in intact animals, however. Here we describe a method that measures microtubule dynamics as an exchange of tubulin dimers into microtubules in vivo. The incorporation of deuterium ((2)H(2)) from heavy water ((2)H(2)O) into tubulin dimers and polymers is measured by gas chromatography/mass spectrometry. In cultured human lung and breast cancer cell lines, or in tumors implanted into nude mice, tubulin dimers and polymerized microtubules exhibited nearly identical label incorporation rates, reflecting their rapid exchange. Administration of paclitaxel during 24 h of (2)H(2)O labeling in vivo reduced (2)H labeling in polymers while increasing (2)H in dimers, indicating diminished flux of dimers into polymers (i.e. inhibition of microtubule dynamic equilibrium). In vivo inhibition of microtubule dynamics was dose-dependent and correlated with inhibition of DNA replication, a stable isotopic measure of tumor cell growth. In contrast, microtubule polymers from sciatic nerve of untreated mice were not in dynamic equilibrium with tubulin dimers, and paclitaxel increased label incorporation into polymers. Our results directly demonstrate altered microtubule dynamics as an important action of MTPAs in vivo. This sensitive and quantitative in vivo assay of microtubule dynamics may prove useful for pre-clinical and clinical development of the next generation of MTPAs as anticancer drugs.  相似文献   

5.
MCAK belongs to the Kin I subfamily of kinesin-related proteins, a unique group of motor proteins that are not motile but instead destabilize microtubules. We show that MCAK is an ATPase that catalytically depolymerizes microtubules by accelerating, 100-fold, the rate of dissociation of tubulin from microtubule ends. MCAK has one high-affinity binding site per protofilament end, which, when occupied, has both the depolymerase and ATPase activities. MCAK targets protofilament ends very rapidly (on-rate 54 micro M(-1).s(-1)), perhaps by diffusion along the microtubule lattice, and, once there, removes approximately 20 tubulin dimers at a rate of 1 s(-1). We propose that up to 14 MCAK dimers assemble at the end of a microtubule to form an ATP-hydrolyzing complex that processively depolymerizes the microtubule.  相似文献   

6.
In Arabidopsis thaliana, the microtubule-associated protein AtMAP65-1 shows various functions on microtubule dynamics and organizations. However, it is still an open question about whether AtMAP65-1 binds to tubulin dimers and how it regulates microtubule dynamics. In present study, the tubulin-binding activity of AtMAP65-1 was investigated. Pull-down and co-sedimentation experiments demonstrated that AtMAP65-1 bound to tubulin dimers, at a molar ratio of 1 : 1. Cross-linking experiments showed that AtMAP65-1 bound to tubulin dimers by interacting with alpha-tubulin of the tubulin heterodimer. Interfering the bundling effect of AtMAP65-1 by addition of salt and monitoring the tubulin assembly, the experiment results indicated that AtMAP65-1 promoted tubulin assembly by interacting with tubulin dimers. In addition, five truncated versions of AtMAP65-1, namely AtMAP65-1 deltaN339 (amino acids 340-587); AtMAP65-1 deltaN494 (amino acids 495-587); AtMAP65-1 340-494 (amino acids 340-494); AtMAP65-1 deltaC495 (amino acids 1-494) and AtMAP65-1 deltaC340 (amino acids 1-339), were tested for their binding activities and roles in tubulin polymerization in vitro. Four (AtMAP65-1 deltaN339, deltaN494, AtMAP65-1 340-494 and deltaC495) from the five truncated proteins were able to co-sediment with microtubules, and three (AtMAP65-1 deltaN339, deltaN494 and AtMAP65-1 340-494) of them could bind to tubulin dimers in vitro. Among the three truncated proteins, AtMAP65-1 deltaN339 showed the greatest activity to promote tubulin polymerization, AtMAP65-1 deltaN494 exhibited almost the same activity as the full length protein in promoting tubulin assembly, and AtMAP65-1 340-494 had minor activity to promote tubulin assembly. On the contrast, AtMAP65-1 deltaC495, which bound to microtubules but not to tubulin dimers, did not affect tubulin assembly. Our study suggested that AtMAP65-1 might promote tubulin assembly by binding to tubulin dimers in vivo.  相似文献   

7.
A combined morphometric and biochemical approach has been used to identify and quantitate microtubules and tubulin in isolated hepatocytes. The total soluble pool of microtubule protein was estimated by specific high affinity binding to radiolabeled colchicine. Scatchard analysis of the data identified two populations of binding sites: high affinity-low capacity sites resembling tubulin and low affinity-high capacity sites believed to represent nonspecific colchicine-binding sites. Data from these studies indicate that tubulin represents 1% of the soluble protein of the cell, that 9.0 X 10(-14) dimers of tubulin are present per microgram soluble hepatocyte protein, and that the average hepatocyte contains 3.1 X 10(7) tubulin dimers. Our calculations suggest that this amount of tubulin would form a microtubule 1.9 cm in length if totally assembled. However, stereological measurements indicate that the actual length of microtubules in the cytosolic compartment of the average hepatocyte is only 0.28 cm. Thus, these experiments suggest that only 15% of the available tubulin in hepatocytes of postabsorptive rats is assembled in the form of microtubules.  相似文献   

8.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo.  相似文献   

9.
A new paper by Slep and Vale in a recent issue of Molecular Cell provides structural clues as to how three different +TIP proteins interact with tubulin and suggests that +TIPs deliver oligomers of tubulin dimers to growing microtubule ends.  相似文献   

10.
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.  相似文献   

11.
gamma-Tubulin is essential to microtubule organization in eukaryotic cells. It is believed that gamma-tubulin interacts with tubulin to accomplish its cellular functions. However, such an interaction has been difficult to demonstrate and to characterize at the molecular level. gamma-Tubulin is a poorly soluble protein, not amenable to biochemical studies in a purified form as yet. Therefore basic questions concerning the existence and properties of tubulin binding sites on gamma-tubulin have been difficult to address. Here we have performed a systematic search for tubulin binding sites on gamma-tubulin using the SPOT peptide technique. We find a specific interaction of tubulin with six distinct domains on gamma-tubulin. These domains are clustered in the central part of the gamma-tubulin primary amino acid sequence. Synthetic peptides corresponding to the tubulin binding domains of gamma-tubulin bind with nanomolar K(d)s to tubulin dimers. These peptides do not interfere measurably with microtubule assembly in vitro and associate with microtubules along the polymer length. On the tertiary structure, the gamma-tubulin peptides cluster to surface regions on both sides of the molecule. Using SPOT analysis, we also find peptides interacting with gamma-tubulin in both the alpha- and beta-tubulin subunits. The tubulin peptides cluster to surface regions on both sides of the alpha- and beta- subunits. These data establish gamma-tubulin as a tubulin ligand with unique tubulin-binding properties and suggests that gamma-tubulin and tubulin dimers associate through lateral interactions.  相似文献   

12.
Microtubule nucleation   总被引:10,自引:0,他引:10  
Microtubule nucleation is the process in which several tubulin molecules interact to form a microtubule seed. Microtubule nucleation occurs spontaneously in purified tubulin solutions, and molecular intermediates between tubulin dimers and microtubules have been identified. Microtubule nucleation is enhanced in tubulin solutions by the addition of gamma-tubulin or various gamma-tubulin complexes. In vivo, microtubule assembly is usually seeded by gamma-tubulin ring complexes. Recent studies suggest, however, that microtubule nucleation can occur in the absence of gamma-tubulin, and that gamma-tubulin may have other cell functions apart from being a major component of the gamma-tubulin ring complex.  相似文献   

13.
Numerous isotypes of the structural protein tubulin have now been characterized in various organisms and their expression offers a plausible explanation for observed differences affecting microtubule function in vivo. While this is an attractive hypothesis, there are only a handful of studies demonstrating a direct influence of tubulin isotype composition on the dynamic properties of microtubules. Here, we present the results of experimental assays on the assembly of microtubules from bovine brain tubulin using purified isotypes at various controlled relative concentrations. A novel data analysis is developed using recursive maps which are shown to be related to the master equation formalism. We have found striking similarities between the three isotypes of bovine tubulin studied in regard to their dynamic instability properties, except for subtle differences in their catastrophe frequencies. When mixtures of tubulin isotypes are analyzed, their nonlinear concentration dependence is modeled and interpreted in terms of lower affinities of tubulin dimers belonging to the same isotype than those that represent different isotypes indicating hitherto unsuspected influences of tubulin dimers on each other within a microtubule. Finally, we investigate the fluctuations in microtubule assembly and disassembly rates and conclude that the inherent rate variability may signify differences in the guanosine-5′-triphosphate composition of the growing and shortening microtubule tips. It is the main objective of this article to develop a quantitative model of tubulin polymerization for individual isotypes and their mixtures. The possible biological significance of the observed differences is addressed.  相似文献   

14.
Electric birefringence has been used to examine the states of association of tubulin in phosphocellulose-purified tubulin or depolymerized microtubule protein solutions at low temperature. In a high electric field (1000-4000 V/cm), tubulin could be orientated (owing to the existence of a permanent and/or induced dipole) and exhibited a positive birefringence (delta n), related to its intrinsic optical anisotropy. The analysis of the relaxation process (depending on hydrodynamic properties of molecules), by measurement of the time decay of delta n, revealed the existence of a multicomponent or polydisperse system, whatever the tubulin solution. Two relaxation times, representative of the smallest and the largest orientated species, were obtained by computer-fitting analysis. The mean values of relaxation time for phosphocellulose-purified tubulin were 0.8 and 8 microseconds. In microtubule protein solutions, large-sized macromolecular species with relaxation time up to 450 microseconds were detected. The largest species (relaxation times ranging from 50 to 450 microseconds) could be eliminated by centrifugation at 3000000 X g for 1 h. Addition of microtubule-associated protein to either pure tubulin or high-speed centrifuged microtubule protein led to a rapid formation of large species analogous to those present in microtubule protein. Molecular dimensions of the relaxing structures were estimated using simple hydrodynamic models and values of rotational diffusion constants calculated from the relaxation times, and compared to those of the structures described in the literature. In conclusion, we have found that (a) phosphocellulose-purified tubulin is not only composed of elementary species (dimers) but also contains tubulin-associated forms of limited size (up to 7-10 dimers), (b) depolymerized microtubule protein solutions contain ring oligomers and structures very much larger, the formation of which is dependent on the presence of microtubule-associated protein.  相似文献   

15.
CRMP-2 binds to tubulin heterodimers to promote microtubule assembly   总被引:1,自引:0,他引:1  
Regulated increase in the formation of microtubule arrays is thought to be important for axonal growth. Collapsin response mediator protein-2 (CRMP-2) is a mammalian homologue of UNC-33, mutations in which result in abnormal axon termination. We recently demonstrated that CRMP-2 is critical for axonal differentiation. Here, we identify two activities of CRMP-2: tubulin-heterodimer binding and the promotion of microtubule assembly. CRMP-2 bound tubulin dimers with higher affinity than it bound microtubules. Association of CRMP-2 with microtubules was enhanced by tubulin polymerization in the presence of CRMP-2. The binding property of CRMP-2 with tubulin was apparently distinct from that of Tau, which preferentially bound microtubules. In neurons, overexpression of CRMP-2 promoted axonal growth and branching. A mutant of CRMP-2, lacking the region responsible for microtubule assembly, inhibited axonal growth and branching in a dominant-negative manner. Taken together, our results suggest that CRMP-2 regulates axonal growth and branching as a partner of the tubulin heterodimer, in a different fashion from traditional MAPs.  相似文献   

16.
Microtubules are complex structures arising in part from the polymerization of tubulin dimers. Tubulin binds to a wide range of drugs which have been used as probes for tubulin conformation and assembly properties. There is some evidence that taxol and taxotere have differing effects on tubulin conformation. Previous work has shown that MAP2 and Tau, although they both induce microtubule assembly, have qualitatively different effects on tubulin's behavior. Since most microtubulesin vivo are likely to be associated with MAPs, we decided to characterize the differential effects of MAP2, Tau, taxol, and taxotere on tubulin polymerization with the aim of understanding the mechanisms through which these agents stimulate microtubule assembly. Furthermore, the inhibitive effect of calcium has been used to elucidate the ability of the two drugs to force tubulin assembly. These observations suggest that docetaxel, in addition to its greater efficiency in tubulin assembly, may have the capacity to differently alter certain classes of microtubules. Tau and MAP2 accessory proteins may represent important cofactors modulating the effects of taxoids.  相似文献   

17.
Almost 40 years since the discovery of microtubule dynamic instability, the molecular mechanisms underlying microtubule dynamics remain an area of intense research interest. The “standard model” of microtubule dynamics implicates a “cap” of GTP-bound tubulin dimers at the growing microtubule end as the main determinant of microtubule stability. Loss of the GTP-cap leads to microtubule “catastrophe,” a switch-like transition from microtubule growth to shrinkage. However, recent studies, using biochemical in vitro reconstitution, cryo-EM, and computational modeling approaches, challenge the simple GTP-cap model. Instead, a new perspective on the mechanisms of microtubule dynamics is emerging. In this view, highly dynamic transitions between different structural conformations of the growing microtubule end – which may or may not be directly linked to the nucleotide content at the microtubule end – ultimately drive microtubule catastrophe.  相似文献   

18.
Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule “structural plasticity.”  相似文献   

19.
Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.  相似文献   

20.
Microtubules have been in the focus of biophysical research for several decades. However, the confusing and mutually contradictory results regarding their elasticity and fluctuations have cast doubt on their present understanding. In this paper, we present the empirical evidence for the existence of discrete guanosine diphosphate (GDP)–tubulin fluctuations between a curved and a straight configuration at room temperature as well as for conformational tubulin cooperativity. Guided by a number of experimental findings, we build the case for a novel microtubule model, with the principal result that microtubules can spontaneously form micron-sized cooperative helical states with unique elastic and dynamic features. The polymorphic dynamics of the microtubule lattice resulting from the tubulin bistability quantitatively explains several experimental puzzles, including anomalous scaling of dynamic fluctuations of grafted microtubules, their apparent length–stiffness relation, and their remarkable curved–helical appearance in general. We point out that the multistability and cooperative switching of tubulin dimers could participate in important cellular processes, and could in particular lead to efficient mechanochemical signaling along single microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号