首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-small cell lung cancer (NSCLC) has two major subtypes: adenocarcinoma (AC) and squamous cell carcinoma (SCC). The diagnosis and treatment of NSCLC are hindered by the limited knowledge about the pathogenesis mechanisms of subtypes of NSCLC. It is necessary to research the molecular mechanisms related with AC and SCC. In this work, we improved the logic analysis algorithm to mine the sufficient and necessary conditions for the presence states (presence or absence) of phenotypes. We applied our method to AC and SCC specimens, and identified lower and higher logic relationships between genes and two subtypes of NSCLC. The discovered relationships were independent of specimens selected, and their significance was validated by statistic test. Compared with the two earlier methods (the non-negative matrix factorization method and the relevance analysis method), the current method outperformed these methods in the recall rate and classification accuracy on NSCLC and normal specimens. We obtained biomarkers. Among biomarkers, genes have been used to distinguish AC from SCC in practice, and other six genes were newly discovered biomarkers for distinguishing subtypes. Furthermore, NKX2-1 has been considered as a molecular target for the targeted therapy of AC, and other genes may be novel molecular targets. By gene ontology analysis, we found that two biological processes (‘epidermis development’ and ‘cell adhesion’) were closely related with the tumorigenesis of subtypes of NSCLC. More generally, the current method could be extended to other complex diseases for distinguishing subtypes and detecting the molecular targets for targeted therapy.  相似文献   

2.
Liang Xia  Wenzhu Zhang 《Biomarkers》2013,18(7):700-711
Abstract

Background: Promoter methylation of tumour suppressor genes (TSGs) CDKN2A, CDKN2B and CDH13 has been reported in ovarian cancer. However, the clinicopathological characteristics and prognostic role of CDKN2A, CDKN2B and CDH13 promoter methylation in ovarian carcinoma remained unclear.

Methods: The pooled odds ratio (OR) or hazard ratios (HRs) with their 95% confidence intervals (95% CIs) were calculated in this meta-analysis. The Cancer Genome Atlas data were obtained to confirm the role of CDKN2A, CDKN2B and CDH13 methylation in ovarian cancer.

Results: CDKN2A, CDKN2B and CDH13 promoter methylation was higher in ovarian cancer than in normal ovarian tissues. CDH13 promoter methylation was correlated with tumour histology (serous vs. non-serous type: OR?=?0.33, p?=?0.031). CDKN2A promoter methylation was not linked to overall survival (OS), but it was correlated with a poor prognosis in progression-free survival (HR?=?1.55, p?=?0.004). TCGA data showed no correlation between CDKN2A, CDKN2B and CDH13 methylation and OS as well as disease-free survival (DFS).

Conclusions: CDKN2A, CDKN2B and CDH13 promoter methylation may correlate with the increased risk of ovarian cancer. CDKN2A promoter methylation may be an independent prognostic biomarker for predicting progression-free survival.  相似文献   

3.
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.  相似文献   

4.
5.
6.
Chromosomal and genome abnormalities of 3p are frequent in many epithelial tumors, including lung cancer. Several critical regions with a high frequency of hemi-and homozygous deletions in tumors are known for 3p, and more than 20 cancer-related genes occur in 3p21.3. Quantitative real-time PCR was used to measure the mRNA level for tumor-suppressor and candidate genes of 3p21.3 (RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1, and HYAL2) in major types of non-small cell lung cancer (NSCLC): squamous cell lung cancer (SCC) and lung adenocarcinoma (AC). A significant (2-to 100-fold) and frequent (44–100%) decrease in mRNA levels was observed in NSCLC. The mRNA level decrease and its frequency depended on the histological type of NSCLC for all genes. The downregulation of RASSF1A and ITGA9 was significantly associated with AC progression; the same tendency was observed for RBSP3/CTDSPL, NPRL2/G21, HYAL1, and HYAL2. In SCC, the downregulation of all genes was not associated with the clinical stage, tumor cells differentiation, and metastasis in lymph nodes. The RBSP3/CTDSPL, NPRL2/G21, ITGA9, HYAL1, and HYAL2 mRNA levels significantly (5-to 13-fold on average) decreased at a high frequency (83–100%) as early as SCC stage I. Simultaneous downregulation of all six genes was observed in some tumor samples and was independent of the gene position in 3p21.3 and the functions of the protein products. The Spearman correlation coefficient r s was 0.63–0.91, p < 0.001. The highest r s values were obtained for gene pairs ITGA9-HYAL2 and HYAL1-HYAL2, whose products mediate cell-cell adhesion and cell-matrix interactions; coregulation of the genes was assumed on this basis. Both genetic and epigenetic mechanisms proved to be important for downregulation of RBSP3/CTDSPL and ITGA9. This finding supported the hypothesis that the cluster of cancerrelated genes in the extended 3p21.3 locus is simultaneously inactivated during the development and progression of lung cancer and other epithelial tumors. A significant and frequent decrease in the mRNA level of the six genes in SCC could be important for developing specific biomarker sets for early SCC diagnosis and new approaches to gene therapy of NSCLC.  相似文献   

7.
《Epigenetics》2013,8(4):621-633
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.  相似文献   

8.

Background

DNA methylation is commonly linked with the silencing of the gene expression for many tumor suppressor genes. As such, determining DNA methylation patterns should aid, in times to come, in the diagnosis and personal treatment for various types of cancers. Here, we analyzed the methylation pattern from five colorectal cancer patients from the Amazon state in Brazil for four tumor suppressor genes, viz.: DAPK, CDH1, CDKN2A, and TIMP2 by employing a polymerase chain reaction (PCR) specific to methylation. Efforts in the study of colorectal cancer are fundamental as it is the third most of highest incidence in the world.

Results

Tumor biopsies were methylated in 1/5 (20 %), 2/5 (40 %), 4/5 (80 %), and 4/5 (80 %) for CDH1, CDKN2A, DAPK, and TIMP2 genes, respectively. The margin biopsies were methylated in 3/7 (43 %), 2/7 (28 %), 7/7 (100 %), and 6/7 (86 %) for CDH1, CDKN2A, DAPK, and TIMP2, respectively.

Conclusions

Our findings showed DAPK and TIMP2 to be methylated in most samples from both tumor tissues and adjacent non-neoplastic margins; thus presenting distinct methylation patterns. This emphasizes the importance of better understanding of the relation of these patterns with cancer in the context of different populations.  相似文献   

9.

Background

The CpG island methylator phenotype (CIMP) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers) using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel.

Metholodology/Principal Findings

DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16), CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF) and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight). In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers), multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and β-catenin (CTNNB1) activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.

Conclusions

Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also suggest that KRAS mutation is related with a random CpG island methylation pattern which may lead to CIMP-low tumors.  相似文献   

10.
To gain insight into the role of genomic alterations in breast cancer progression, we conducted a comprehensive genetic characterization of a series of four cell lines derived from MCF10A. MCF10A is an immortalized mammary epithelial cell line (MEC); MCF10AT is a premalignant cell line generated from MCF10A by transformation with an activated HRAS gene; MCF10CA1h and MCF10CA1a, both derived from MCF10AT xenografts, form well-differentiated and poorly-differentiated malignant tumors in the xenograft models, respectively. We analyzed DNA copy number variation using the Affymetrix 500 K SNP arrays with the goal of identifying gene-specific amplification and deletion events. In addition to a previously noted deletion in the CDKN2A locus, our studies identified MYC amplification in all four cell lines. Additionally, we found intragenic deletions in several genes, including LRP1B in MCF10CA1h and MCF10CA1a, FHIT and CDH13 in MCF10CA1h, and RUNX1 in MCF10CA1a. We confirmed the deletion of RUNX1 in MCF10CA1a by DNA and RNA analyses, as well as the absence of the RUNX1 protein in that cell line. Furthermore, we found that RUNX1 expression was reduced in high-grade primary breast tumors compared to low/mid-grade tumors. Mutational analysis identified an activating PIK3CA mutation, H1047R, in MCF10CA1h and MCF10CA1a, which correlates with an increase of AKT1 phosphorylation at Ser473 and Thr308. Furthermore, we showed increased expression levels for genes located in the genomic regions with copy number gain. Thus, our genetic analyses have uncovered sequential molecular events that delineate breast tumor progression. These events include CDKN2A deletion and MYC amplification in immortalization, HRAS activation in transformation, PIK3CA activation in the formation of malignant tumors, and RUNX1 deletion associated with poorly-differentiated malignant tumors.  相似文献   

11.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the RB1, p16/CDKN2A, p15/CDKN2B, p14/ARF, CDH1, HIC1, and N33 5 regions in non-small cell lung cancer (51 tumors). Methylation was observed for the two suppressor genes involved in controlling the cell cycle through the Cdk–Rb–E2F signaling pathway, RB1 (10/51, 19%) and p16 (20/51, 39%). The highest methylation frequencies were established for CDH1 (72%) and HIC1 (82%). The CpG islands of p14 and p15 proved to be nonmethylated. At least one gene was methylated in 90% (46/51) tumors and no gene, in 10% (5/51) tumors. In addition, the genes were tested for methylation in peripheral blood lymphocytes of healthy subjects. Methylation frequency significantly differed between tumors and normal cells in the case of RB1, p16, CDH1, HIC1, and N33. Gene methylation frequency was tested for association with histological type of the tumor and stage of tumor progression. Methylation index of a panel of tumor suppressor genes was established for groups of tumors varying in clinical and morphological parameters.  相似文献   

12.
In order to gain a better understanding of the underlying biology of squamous cell carcinoma (SCC), we tested the hypothesis that SCC originating from different organs may possess common molecular alterations. SCC samples (N = 361) were examined using clinical-grade targeted next-generation sequencing (NGS). The most frequent SCC tumor types were head and neck, lung, cutaneous, gastrointestinal and gynecologic cancers. The most common gene alterations were TP53 (64.5% of patients), PIK3CA (28.5%), CDKN2A (24.4%), SOX2 (17.7%), and CCND1 (15.8%). By comparing NGS results of our SCC cohort to a non-SCC cohort (N = 277), we found that CDKN2A, SOX2, NOTCH1, TP53, PIK3CA, CCND1, and FBXW7 were significantly more frequently altered, unlike KRAS, which was less frequently altered in SCC specimens (all P < 0.05; multivariable analysis). Therefore, we identified “squamousness” gene signatures (TP53, PIK3CA, CCND1, CDKN2A, SOX2, NOTCH 1, and FBXW7 aberrations, and absence of KRAS alterations) that were significantly more frequent in SCC versus non-SCC histologies. A multivariable co-alteration analysis established 2 SCC subgroups: (i) patients in whom TP53 and cyclin pathway (CDKN2A and CCND1) alterations strongly correlated but in whom PIK3CA aberrations were less frequent; and (ii) patients with PIK3CA alterations in whom TP53 mutations were less frequent (all P ≤ 0 .001, multivariable analysis). In conclusion, we identified a set of 8 genes altered with significantly different frequencies when SCC and non-SCC were compared, suggesting the existence of patterns for “squamousness.” Targeting the PI3K-AKT-mTOR and/or cyclin pathway components in SCC may be warranted.  相似文献   

13.
Colorectal cancer (CRC) is the third most common cancer worldwide. Colorectal cancer incidence differs widely among different geographic regions. In addition to mutational changes, epigenetic mechanisms also play important roles in the pathogenesis of CRCs. O6-methylguanine-DNA methyltransferase (O 6 -MGMT) is a DNA repair protein and in the absence of MGMT activity, G-to-A transition may accumulate in the specific genes such as K-ras and p53. To identify which CpG sites are critical for its downregulation, we analyzed the methylation status of the MGMT gene promoter in two sites in CRC patients. Then we compared the frequency of their methylation changes with the results of our previously reported K-ras gene mutation, APC2 and p16 methylation. MGMT methylation was examined in 92 tumor samples. A methylation specific PCR (MSP) method was performed for two loci of MGMT gene which described as MGMT-A and MGMT-B. The prevalence of MGMT-A, and MGMT-B methylation was 49/91 (53.8 %), and 83/92 (90.2 %), respectively. We detected high frequency of MGMT-B but not MGMT-A methylation in tumor tissues with APC2 methylation. Our results showed that MGMT-B methylation is significantly associated with K-ras gene mutation rather than MGMT-A (p = 0.04). Simultaneously, an inverse correlation was found between p16 and MGMT-B methylation simultaneously (p = 0.02). Our study indicated that hypermethylation of the specific locus near the MGMT start codon is critical for cancer progression. MGMT-B assessment that is associated with K-ras mutation can have a prognostic value in patients with CRC.  相似文献   

14.

Introduction

The widespread application of microarray experiments to cancer research is astounding including lung cancer, one of the most common fatal human tumors. Among non-small cell lung carcinoma (NSCLC), there are two major histological types of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC).

Results

In this paper, we proposed to integrate a visualization method called Radial Coordinate Visualization (Radviz) with a suitable classifier, aiming at discriminating two NSCLC subtypes using patients'' gene expression profiles. Our analyses on simulated data and a real microarray dataset show that combining with a classification method, Radviz may play a role in selecting relevant features and ameliorating parsimony, while the final model suffers no or least loss of accuracy. Most importantly, a graphic representation is more easily understandable and implementable for a clinician than statistical methods and/or mathematic equations.

Conclusion

To conclude, using the NSCLC microarray data presented here as a benchmark, the comprehensive understanding of the underlying mechanism associated with NSCLC and of the mechanisms with its subtypes and respective stages will become reality in the near future.  相似文献   

15.
Multiplex methylation-sensitive PCR was employed in studying the methylation of CpG islands in the R1, p16/CDKN2, p15/CDKN2, p14/ARF, DH1, MGMT, HIC1, and N33 promoter regions in breast cancer (105 tumors). Methylation was often observed for the two major suppressor genes involved in controlling the cell cycle through the Cdk–Rb–E2F signaling pathway, R1 (18/105, 17%) and p16 (59/105, 56%); both genes were methylated in 13 tumors. Methylation involved p15 in two (2%) tumors; CDH1, in 83 (79%) tumors; MGMT, in eight (8%) tumors, and N33, in nine (9%) tumors. The p14 promoter was not methylated in the tumors examined.  相似文献   

16.

Background

Gene silencing due to aberrant DNA methylation is a frequent event in hepatocellular carcinoma (HCC) and also in hepatocellular adenoma (HCA). However, very little is known about epigenetic defects in fibrolamellar carcinoma (FLC), a rare variant of hepatocellular carcinoma that displays distinct clinical and morphological features.

Methodology/Principal Findings

We analyzed the methylation status of the APC, CDH1, cyclinD2, GSTπ1, hsa-mir-9-1, hsa-mir-9-2, and RASSF1A gene in a series of 15 FLC and paired normal liver tissue specimens by quantitative high-resolution pyrosequencing. Results were compared with common HCC arising in non-cirrhotic liver (n = 10). Frequent aberrant hypermethylation was found for the cyclinD2 (19%) and the RASSF1A (38%) gene as well as for the microRNA genes mir-9-1 (13%) and mir-9-2 (33%). In contrast to common HCC the APC and CDH1 (E-cadherin) genes were found devoid of any DNA methylation in FLC, whereas the GSTπ1 gene showed comparable DNA methylation in tumor and surrounding tissue at a moderate level. Changes in global DNA methylation level were measured by analyzing methylation status of the highly repetitive LINE-1 sequences. No evidence of global hypomethylation could be found in FLCs, whereas HCCs without cirrhosis showed a significant reduction in global methylation level as described previously.

Conclusions

FLCs display frequent and distinct gene-specific hypermethylation in the absence of significant global hypomethylation indicating that these two epigenetic aberrations are induced by different pathways and that full-blown malignancy can develop in the absence of global loss of DNA methylation. Only quantitative DNA methylation detection methodology was able to identify these differences.  相似文献   

17.
18.
Oncogenic human papillomaviruses (HPV) are associated with nearly all cervical cancers and are increasingly important in the etiology of oropharyngeal tumors. HPV-associated head and neck squamous cell carcinomas (HNSCC) have distinct risk profiles and appreciate a prognostic advantage compared to HPV-negative HNSCC. Promoter hypermethylation is widely recognized as a mechanism in the progression of HNSCC, but the extent to which this mechanism is consistent between HPV(+) and HPV(−) tumors is unknown. To investigate the epigenetic regulation of gene expression in HPV-induced and carcinogen-induced cancers, we examined genome-wide DNA methylation and gene expression in HPV(+) and HPV(−) SCC cell lines. We used two platforms: the Illumina Infinium Methylation BeadArray and tiling arrays, and confirmed illustrative examples with pyrosequencing and quantitative PCR. These analyses indicate that HPV(+) cell lines have higher DNA methylation in genic and LINE-1 regions than HPV(−) cell lines. Differentially methylated loci between HPV(+) and HPV(−) cell lines significantly correlated with HPV-typed HNSCC primary tumor DNA methylation levels. Novel findings include higher promoter methylation of polycomb repressive complex 2 target genes in HPV(+) cells compared to HPV(−) cells and increased expression of DNMT3A in HPV(+) cells. Additionally, CDKN2A and KRT8 were identified as interaction hubs among genes with higher methylation and lower expression in HPV(−) cells. Conversely, RUNX2, IRS-1 and CCNA1 were major hubs with higher methylation and lower expression in HPV(+) cells. Distinct HPV(+) and HPV(−) epigenetic profiles should provide clues to novel targets for development of individualized therapeutic strategies.Key words: epigenetics, human papillomavirus, HNSCC, DNA methylation, squamous cell carcinoma, gene expression, microarrays, illumina infinium humanmethylation27 beadarray  相似文献   

19.
Next generation sequencing is transforming patient care by allowing physicians to customize and match treatment to their patients’ tumor alterations. Our goal was to study the association between key molecular alterations and outcome parameters. We evaluated the characteristics and outcomes (overall survival (OS), time to metastasis/recurrence, and best progression-free survival (PFS)) of 392 patients for whom next generation sequencing (182 or 236 genes) had been performed. The Kaplan-Meier method and Cox regression models were used for our analysis, and results were subjected to internal validation using a resampling method (bootstrap analysis). In a multivariable analysis (Cox regression model), the parameters that were statistically associated with a poorer overall survival were the presence of metastases at diagnosis (P = 0.014), gastrointestinal histology (P < 0.0001), PTEN (P < 0.0001), and CDKN2A alterations (P = 0.0001). The variables associated with a shorter time to metastases/recurrence were gastrointestinal histology (P = 0.004), APC (P = 0.008), PTEN (P = 0.026) and TP53 (P = 0.044) alterations. TP53 (P = 0.003) and PTEN (P = 0.034) alterations were independent predictors of a shorter best PFS. A personalized treatment approach (matching the molecular aberration with a cognate targeted drug) also correlated with a longer best PFS (P = 0.046). Our study demonstrated that, across diverse cancers, anomalies in specific tumor suppressor genes (PTEN, CDKN2A, APC, and/or TP53) were independently associated with a worse outcome, as reflected by time to metastases/recurrence, best PFS on treatment, and/or overall survival. These observations suggest that molecular diagnostic tests may provide important prognostic information in patients with cancer.  相似文献   

20.
Purpose: Promoter hypermethylation of tumor suppressor genes may serve as a promising biomarker for the diagnosis of cancer. Cell-free circulating DNA (cf-DNA) shares hypermethylation status with primary tumors. This study investigated promoter hypermethylation of five tumor suppressor genes as markers in the detection of nasopharyngeal carcinoma (NPC) in serum samples. Methods: cf-DNA was extracted from serum collected from 40 NPC patients and 41 age- and sex-matched healthy subjects. The promoter hypermethylation status of the five genes (RASSF1, CDKN2A, DLEC1, DAPK1 and UCHL1) was assessed by methylation-specific PCR after sodium bisulfite conversion. Differences in the methylation status of these five genes between NPC patients and healthy subjects were compared. Results: The concentration of cf-DNA in the serum of NPC patients was significantly higher than that in normal controls. The five tumor suppressor genes – RASSF1, CDKN2A, DLEC1, DAPK1 and UCHL1 – were found to be methylated in 17.5%, 22.5%, 25.0%, 51.4% and 64.9% of patients, respectively. The combination of four-gene marker – CDKN2A, DLEC1, DAPK1 and UCHL1 – had the highest sensitivity and specificity in predicting NPC. Conclusion: Screening DNA hypermethylation of tumor suppressor genes in serum was a promising approach for the diagnosis of NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号