首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum (Al) has been associated with neuronal dysfunction. These neuronal changes may involve glial alterations. We intend to evaluate the consequence of Al on the glial system and the behavior of rats exposed chronically to 0.3% of aluminum chloride in drinking water during 4 months in adulthood (A) or since intra-uterine age (IU); animals from this latter group were sacrificed at four months of age. Our data show an intense glial fibrillary acidic protein (GFAP)-immunoreactivity with a high density of astrocytes in both treated groups compared with controls. However, in IU rats, astrocytes display prominent glial cell bodies and processes. A and IU rat groups perform a significantly reduced locomotor activity. However, using the dark/light box test, the IU rats prefer to spend more time in the enlightened compartment compared to other groups. Behavioral and glial changes caused by Al exposure bring support for the role of Al in brain dysfunction involving glial alterations.  相似文献   

2.
3.
Several studies have been suggested that long-term exposure to stress has detrimental effects on various brain functions and leads to neurodegenerative changes. However, the precise mechanism by which stress induces brain damage or neurodegenerative change is still a matter of debate. This study investigated the damage of neuronal cells involving in the expression of iNOS, NR1, and GFAP in various brain regions and characterized the change of sphingolipid metabolites as a biomarker of physiological change in serum after 3 weeks of repeated immobilization. In this report, the expression of iNOS, GFAP and NR1 in the brain of rats exposed to chronic immobilization stress was investigated. The expression of iNOS, GFAP and NR1 was elevated in the cortex and hippocampal area after 3 weeks of repeated immobilization. Immunoreactivity for GFAP and vimentin, as a marker of reactive gliosis, was also elevated in the cortex and hippocampus. The level of sphingolipids was measured in order to assess the changes in sphingolipid metabolites in the serum of rats exposed to stress. Interestingly, the level of So-1-P was increased in the plasma of rats subjected to 6-h immobilization stress than repeated immobilization. To further investigate the modulating effect of increased So-1-P in various brain regions, So-1-P was infused into the lateral cerebroventricle at a rate of 100 pmol/10 μl/h for 7 days. The expression of iNOS and NR1 was elevated in the cortex, hippocampus, striatum, and cerebellum after So-1-P infusion into the cerebroventricle, while the level of GFAP was elevated in the hippocampus and striatum. Interestingly, the expression levels of iNOS, GFAP, and NR1 were increased by the direct application of So-1-P to cultured cortical cells. These results suggest that NO production via iNOS expression, the NR1 expression, the activation of astrocytes, and the elevation of So-1-P may cause neurodegenerative changes in rats subjected to chronic immobilization and that the elevation of So-1-P by stress exposure would be one of the stress signal molecules.  相似文献   

4.
Faecal excretion is a basic means of detoxification upon ingestion of Pb-contaminated feed. In order to determine a time course of Pb elimination after oral exposure to two different forms of this heavy metal (lead acetate vs. phyto-bound Pb), a feeding study was carried out in experimental rats using the Pb phyto-hyperaccumulator Pistia stratiotes as a model diet. The effect of starvation on Pb excretion was further studied in rats that were fed plant material. Twelve Pb doses (7 μg Pb/1 g BW) were administered orally over a 5-week period. Faeces samples were collected 24 and 72 h post-exposure. Inductively coupled plasma optical emission spectrometry and electrothermal absorption spectrometry methods were used for determination of heavy metal concentrations. Up to 53 % of ingested Pb was rapidly eliminated from the exposed rats via faeces within 24 h after exposure. Faecal excretion in exposed rats differed significantly when compared to that of the control group. Fasting before exposure reduced Pb excretion by up to 50 %. Faecal excretions of both examined Pb forms exhibited almost identical patterns. Considerable differences were revealed concerning total excretion levels; lead acetate was excreted in amount greater extent than those of phytobound Pb. Results of our study suggest that Pb forms occurring in the P. stratiotes tissues are absorbed through the gastrointestinal tract to a greater extent than Pb from lead acetate. Therefore, higher portions of ingested Pb can be available for potential accumulation in tissues of exposed subjects.  相似文献   

5.
Early exposure to lead (Pb) has been associated with an elevated risk of developing neurodegenerative diseases. There is evidence that neuronal damage in chronic Pb exposure can be caused by the convergence of glial damage. Apoptosis may be a possible mechanism of Pb‐induced cell death in the central nervous system. We tested cellular damage and apoptosis in the spinal cord of Wistar rats treated with Pb. Twelve rats were divided into two groups (n = 6): the control group was treated with only drinking water and the other group received 500 ppm of Pb acetate. After 3 months of Pb treatment, all animals were euthanized and spinal cords were extracted. Morphology was evaluated by Nissl and Kluver‐Barrera stainings. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Specific antibodies were used to evaluate Pb damage in oligodendrocytes, astrocytes, and microglia. A large number of apoptotic bodies was observed in the white matter of the Pb‐treated group. The Pb‐treated group also showed a reduced number of neurons and oligodendrocytes but had an increased number of astrocytes compared with the nontreated group. Our results demonstrate that chronic Pb treatment induces neurodegeneration, demyelination, and astrogliosis in the rat spinal cord.  相似文献   

6.

Background

Oxidative damage to the cell, including the formation of 8-oxoG, has been regarded as a significant factor in carcinogenesis and aging. An inbred prematurely aging rat strain (OXYS) is characterized by high sensitivity to oxidative stress, lipid peroxidation, protein oxidation, DNA rearrangements, and pathological conditions paralleling several human degenerative diseases including learning and memory deterioration.

Methods

We have used monoclonal antibodies against a common pre-mutagenic base lesion 8-oxoguanine (8-oxoG) and 8-oxoguanine DNA glycosylase (OGG1) in combination with indirect immunofluorescence microscopy and image analysis to follow the relative amounts and distribution of 8-oxoG and OGG1 in various cells of different brain regions from OXYS and control Wistar rats.

Results

It was shown that 8-oxoG increased with age in mature neurons, nestin- and glial fibrillary acidic protein (GFAP)-positive cells of hippocampus and frontal cortex in both strains of rats, with OXYS rats always displaying statistically significantly higher levels of oxidative DNA damage than Wistar rats. The relative content of 8-oxoG and OGG1 in nestin- and GFAP-positive cells was higher than in mature neurons in both Wistar and OXYS rats. However, there was no significant interstrain difference in the content of OGG1 for all types of cells and brain regions analyzed, and no difference in the relative content of 8-oxoG between different brain regions.

Conclusions

Oxidation of guanine may play an important role in the development of age-associated decrease in memory and learning capability of OXYS rats.

General significance

The findings are important for validation of the OXYS rat strain as a model of mammalian aging.  相似文献   

7.
Background and objectivesLead (Pb) has been reported to disturb the metabolism of essential elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and zinc (Zn) in vivo. This study focused on the relationship between various dose of Pb and the essential elements.Methods50 healthy male C57BL/6 mice underwent oral administration of 0.2 mL lead acetate trihydrate solution (0, 20, 100, 500, and 1000 mg Pb/day/kg body weight) for 3 days. The concentrations of Pb and four essential elements (Ca, Zn, Fe and Mg) in the blood, kidney, liver, bone and brain were quantified with inductively coupled plasma mass spectrometry.ResultsVarious doses of Pb led to significant increases in the contents of Ca, Fe and Zn in the liver, and decreased contents of Mg and Fe in the blood in a dose-dependent pattern. The Pb dose of 20 mg/kg reduced the concentration of bone Ca, which did not continue to show an obvious decline with continued increases in the oral Pb dose. Pb also caused alterations in the Mg distribution pattern, and decreased the correlation of Mg, Ca and Zn in the brain, both findings were dose-dependent. In addition to the changes in metallomics, the related oxidative stress was exacerbated, but no significant changes were detected in hepatic and renal histopathological lesions after a short period of Pb exposure.ConclusionsThis study contributes to a thorough analysis of the Pb-poisoning mechanism, and indicates that the concentrations of essential elements could be used as sensitive toxicological indicators of Pb exposure.  相似文献   

8.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

9.
Background and aimEnvironmental lead (Pb) exposure damages the lungs and is a risk factor for death from cardiovascular disease. Pb induces toxicity by a mechanism, which involves alteration of the essential elements homeostasis. In this study we compare the effects of salinomycin (Sal), monensin (Mon) and meso-2,3-dimercaptosuccinic acid (DMSA) on the concentrations of lead (Pb), calcium (Ca), copper (Cu), iron (Fe) and zinc (Zn) in the lungs and heart of lead-exposed mice.MethodsSixty days old male ICR mice were divided into five groups: control (Ctrl) – untreated mice obtained distilled water for 28 days; Pb-intoxicated group (Pb) – exposed to 80 mg/kg body weight (BW) Pb(NO3)2 during the first 14 days of the experimental protocol; DMSA-treated (Pb + DMSA) – Pb-exposed mice, subjected to treatment with an average daily dose of 20 mg/kg BW DMSA for two weeks; Monensin-treated (Pb + Mon) – Pb-exposed mice, obtained an average daily dose of 20 mg/kg BW tetraethylammonium salt of monensic acid for 14 days; Pb + Sal - Pb-exposed mice, treated with an average daily dose of 20 mg/kg BW tetraethylammonium salt of salinomycinic acid for two weeks. On the 29th day of the experiment the samples (lungs and heart) were taken for atomic absorption analysis.ResultsThe results revealed that exposure of mice to Pb for 14 days significantly increased the concentration of the toxic metal in both organs and elevated the cardiac concentrations of Ca, Cu and Fe compared to untreated mice. Pb exposure diminished the lung concentrations of Ca and Zn compared to that of untreated controls. DMSA, monensin and salinomycin decreased the concentration of Pb in the lungs and heart. Among the tested chelating agents, only salinomycin restored the cardiac Fe concentration to normal control values.ConclusionThe results demonstrated the potential application of polyether ionophorous antibiotic salinomycin as antidote for treatment of Pb-induced toxicity in the lungs and heart. The possible complexation of the polyether ionophorous antibiotics with Ca(II) and Zn(II), which can diminish the endogenous concentrations of both ions in the lungs should be taken into account.  相似文献   

10.
BackgroundGFAP is the major intermediate filament protein in mature astrocytes. Its increased expression and aggregation was firstly associated to Alexander's disease, and successively in different neurological diseases including scrapie, Alzheimer's and Creutzfeld–Jacob diseases. Recently, ceftriaxone a multi-potent β-lactam antibiotic able to overcome the blood–brain barrier, successfully eliminated the cellular toxic effects of misfolded mutated GFAP, similarly to phenytoin sodium, in a cellular model of Alexander's disease and inhibited α-synuclein aggregation protecting PC12 cells from the exposure to 6-hydroxydopamine.MethodsIn this study, synchrotron radiation circular dichroism spectroscopy has been used to obtain structural information about the GFAP-ceftriaxone (phenytoin) interactions, while computational methods allowed the identification of the relevant putative binding site of either ceftriaxone or phenytoin on the dimer structure of GFAP, permitting to rationalize the spectroscopic experimental results.ResultsWe found that GFAP exhibited enhanced stability upon the addition of two equivalents of each ligands with ceftriaxone imparting a more spontaneous interactions and a more ordered complex system than phenytoin.ConclusionsSRCD data and MD models indicate a stronger protective effect of ceftriaxone in neurological disorders characterized by an increased production and polymerization of GFAP.General significanceThis result, in addition to our previous works in which we documented that ceftriaxone interacts with α-synuclein inhibiting its pathological aggregation and that a cyclical treatment with this molecule in a patient with adult-onset Alexander's disease halted, and partly reversed, the progression of neurodegeneration, suggests the possibility of a chaperone-like effect of ceftriaxone on protein involved in specific neurodegenerative diseases.  相似文献   

11.
It is well known that chronic exposure to lead (Pb(+2)) alters a variety of behavioral tasks in rats and mice. Here, we investigated the effect of flaxseed oil (1,000?mg/kg) on lead acetate (20?mg/kg)-induced brain oxidative stress and neurotoxicity in rats. The levels of Pb(+2), lipid peroxidation, nitric oxide (NO), and reduced glutathione (GSH) and the activity of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male albino rats. The level of Pb(+2) was markedly elevated in brain and blood of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in GSH, CAT, SOD, GR, GST, and GPx activities. These findings were associated with DNA fragmentation. In addition, lead acetate induced brain injury as indicated by histopathological changes of the brain. Treatment of rats with flaxseed oil resulted in marked improvement in most of the studied parameters as well as histopathological features. These findings suggest to the conclusion that flaxseed oil significantly decreased the adverse harmful effects of lead acetate exposure on the brain as well as Pb(+2)-induced oxidative stress.  相似文献   

12.
Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinoline alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover, astrocytes are proving critical for normal CNS function, and alterations in their activity and impaired oxidative stress could contribute to diabetes-related cognitive dysfunction. Metabolic and oxidative insults often cause rapid changes in glial cells. Key indicators of this response are increased synthesis of glial fibrillary acidic protein (GFAP) as an astrocytic marker. Therefore, we examined the effects of berberine on glial reactivity of hippocampus in streptozotocin (STZ)-induced diabetic rats, using GFAP immunohistochemistry. Lipid peroxidation, superoxide dismutase (SOD) activity, and nitrite levels were assessed as the parameters of oxidative stress. Eight weeks after diabetes induction, we observed increased numbers of GFAP+ astrocytes immunostaining associated with increased lipid peroxidation, decreased superoxide dismutase activity, and elevated nitrite levels in the hippocampus of STZ-diabetic rats. In contrast, chronic treatment with berberine (50 and 100 mg/kg p.o. once daily) lowered hyperglycemia, reduced oxidative stress, and prevented the upregulation of GFAP in the brain of diabetic rats. In conclusion, the present study demonstrated that the treatment with berberine resulted in an obvious reduction of oxidative stress and GFAP-immunoreactive astrocytes in the hippocampus of STZ-induced diabetic rats.
Fig. 1
Berberine and Gliosis.  相似文献   

13.
BackgroundLead (Pb) is an environmental factor has been suspected of contributing to the dementia including Alzheimer’s disease (AD). Our previous studies have shown that Pb exposure at the subtoxic dose increased brain levels of beta-amyloid (Aβ) and amyloid plaques, a pathological hallmark for AD, in amyloid precursor protein (APP) transgenic mice, and is hypothesized to inhibit Aβ clearance in the blood- cerebrospinal fluid (CSF) barrier. However, it remains unclear how different levels of Pb affect Aβ clearance in the whole blood-brain barrier system. This study was designed to investigate whether chronic exposure of Pb affected the permeability of the blood-brain barrier system by using the Dynamic Contrast-Enhanced Computerized Tomography (DCE-CT) method.MethodsDEC-CT was used to investigate whether chronic exposure of toxic Pb affected the permeability of the real-time blood brain barrier system.ResultsData showed that Pb exposure increased permeability surface area product, and also significantly induced brain perfusion. However, Pb exposure did not alter extracellular volumes or fractional blood volumes of mouse brain.ConclusionOur data suggest that Pb exposure at subtoxic and toxic levels directly targets the brain vasculature and damages the blood brain barrier system.  相似文献   

14.
目的:探讨缺血后处理对心肌缺血再灌注致脑损伤中炎症因子及胶质纤维酸性蛋白的影响。方法:24只雄性SD大鼠随机分为3组(n=8),假手术组(Sham)、心肌缺血/再灌注组(IR)、后处理组(IPost)。结扎大鼠冠状动脉左前降支30 min,复流120 min建立大鼠心肌缺血/再灌注模型。后处理组于再灌注前进行缺血后处理,再灌注10 s,缺血10 s,共3次。断头处死大鼠取脑组织,光镜下观察病理学结果,Western blot检测炎性因子IL-6、IL-8、IL-10,免疫组化法检测GFAP。结果:与Sham组相比较,IR组脑组织炎症因子IL-6,IL-8表达增加,IL-10下降(P0.01),而后处理可以降低脑组织中IL-6,IL-8的表达,增加IL-10的表达(P0.01);与Sham组相比较,IR组脑组织GFAP表达增多(P0.05),而后处理可以显著增加脑组织中GFAP的表达(P0.01)。结论:心肌缺血后处理可以减少脑组织中炎症因子的表达,增加GFAP的表达,从而起到脑保护作用。  相似文献   

15.
The present study was conducted to assess in rats the effects of oral aluminum (Al) exposure on calcium (Ca), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) accumulation and urinary excretion. Three groups of plug-positive Sprague-Dawley (SD) rats were given by gavage 0, 200, and 400 mg/kg/d of Al(OH)3 on gestational days 1–20. Three groups of nonpregnant female SD rats of the same age received Al(OH)3 by gavage at the same doses for 20 consecutive days. At the end of the treatment period, 24-h urine samples were collected for analysis of Al and essential elements. Subsequently, all animals were sacrificed and samples of liver, bone, spleen, kidneys, and brain were removed for metal analyses. With some exceptions, the urinary amounts of Al, Mn, and Cu excreted by pregnant animals as well as the urinary levels of Al excreted by nonpregnant rats were higher in the Al-treated groups than in the respective control groups. Although higher Al levels were found in the liver of pregnant rats, the concentrations of Al in the brain of these animals were lower than those found in the same tissues of nonpregnant rats. With regard to the essential elements, tissue accumulation was most affected in pregnant than in nonpregnant animals. In pregnant rats, the hepatic and renal concentrations of Ca, Mg, Mn, Cu, Zn, and Fe, as well as the levels of Ca in bone, and the concentrations of Cu in brain were significantly higher in the Al-exposed groups than in the control group. According to the current results, oral Al exposure during pregnancy can produce significant changes in the tissue distribution of a number of essential elements.  相似文献   

16.
Abstract

Female Wistar-albino rats were given lead acetate (PbAc) for 60 days to investigate the protective effects of L-carnitine (CA) clinically and histopathologically on PbAc-induced tissue damage. Blood samples were obtained from the jugular vein for hemoglobin (HB), hematocrit (HCT), red blood cells (RBC), white blood cells (WBC), platelets (PLT), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatinine. PbAc treatment caused a significant decrease in HB, HCT and RBC, a significant increase in WBC, AST, ALT and creatinine compared to controls. Although administration of CA did not reverse HB and HCT values, it reversed both the decrease in RBC and the increase in WBC, AST, ALT and creatinine. After the experimental period, all rats were weighed, then decapitated for pathological examination. Control rat liver, kidney and brain showed normal histological architecture. Lead-induced nephropathic kidneys; degenerative changes, inflammation and portal edema of the liver; and brain neuropil vacuolation, neuronal vacuolation, satellitosis and neuronophagia were observed in experimental groups. All changes were reduced in the PbAc group treated with CA (PbAc + CA). PbAc caused copper/zinc superoxide dismutase (Cu/Zn-SOD) expression in both the hepatocytes and tubular epithelium of the kidney. PbAc + CA exposure caused moderate Cu/Zn-SOD immunoreactivity. While in the brain sections of the PbAc group the degenerative neurons were stained intensely with anti-ubiquitin antibody, PbAc + CA rats showed moderate staining in neurons with anti-ubiquitin antibody. These results show that CA as a food additive reduced the severity of tissue damage caused by PbAc.  相似文献   

17.
The objective of this study was to determine the effect of fluoride (F) and arsenic (As) on the activity of acetylcholinesterase (AChE), a critically important nervous system enzyme, and to test the protective role of buffalo epiphyseal (pineal) proteins (BEP) in rats. Arsenic (20 mg/kg BW, intraperitoneally) and F (150 ppm, perorally) were exposed, and BEP was administered intraperitoneally (100 μ g/kg BW) along with F and As to rats for 7 days. As and F exposure significantly (p < 0.05) increased their levels in plasma and decreased the activity of AChE in plasma, RBCs, heart, and brain of rats. Interestingly, As- and F-induced inhibition of AChE activities increased As and F levels in plasma, and organs were significantly (p < 0.05) counteracted by BEP administration. These findings indicate the protective role of buffalo (Bubalus bubalis) epiphyseal proteins on F- and As-induced adverse changes in AChE activity as a candidate biomarker for neurotoxicity in female rats.  相似文献   

18.
BackgroundAluminium (Al) overload has toxic effects on multiple organ systems, especially the nervous system. Al accumulation in the brain, especially the hippocampus, is an important factor contributing to Alzheimer’s disease (AD). Deferiprone (DFP), a metal chelator, is used as a potential treatment for AD. In this study, we investigated the combined effect of taurine and DFP on Al chelation and hippocampal apoptosis in Al-exposed rats, as well as the underlying mechanisms of these effects to explore a possible therapy for AD.MethodsMale Wistar rats were divided into seven groups: negative control group (administered saline), Al-exposure group (administered AlCl3 and saline), and five experimental groups (administered AlCl3 and taurine, varying doses of DFP, or taurine with varying doses of DFP). After 8 weeks of treatment, the rats were sacrificed, and the terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labelling (TUNEL) assay was used to detect hippocampal apoptotic cells. Real-time quantitative PCR was used to assess the expression of the Bcl2 and Bax genes, and a western blotting assay was used to evaluate BCL2, BAX, and cleaved caspase-3 levels.ResultsCompared to the negative control group, the number of apoptotic cells in the hippocampus increased, Bcl2 expression significantly decreased, and BAX and cleaved caspase-3 levels increased in the Al-exposure group. The combination of taurine and DFP exerted a protective effect by inhibiting hippocampal cell apoptosis through the BCL2, BAX, and caspase-3 signalling pathways. Compared with the taurine-administered group, the group administered taurine with DFP showed a significantly increased Bcl2 and decreased Bax expression.ConclusionThe combination of taurine and DFP is a potential candidate for the treatment of AD induced by Al exposure.  相似文献   

19.
Homocysteine (Hcy), an independent risk factor for atherosclerosis, undergoes auto-oxidation and generates reactive oxygen species, which are thought to be main cause of Hcy neurotoxicity. However, the mechanisms leading to neurodegenerative disorders are poorly understood because studies that have investigated the potential neurotoxicity of hyperhomocysteinemia in vivo are scarce. The purpose of this study was to test whether daily administration of methionine, which induces hyperhomocysteinemia, causes glial hyperactivity, and also to investigate the protective effects of melatonin on the brain tissue against oxidative stress of Hcy in rats. There was a significant development of oxidative stress as indicated by an increase in malondialdehyde + 4-hydroxyalkenals in hippocampus and cortex of hyperhomocysteine mic rats, whereas significant reduction was found in the activity of glutathione peroxidase (GSH-Px). Co-treatment with melatonin inhibited the elevation of lipid peroxidation and significantly increased GSH-Px activity in the brain regions studied. Western blot analysis revealed an increase in glial fibrillary acidic protein (GFAP) contents both in hippocampus and frontal cortex (p < 0.001) of hyperhomocysteinemic rats compared to the controls. Administration of melatonin significantly decreased GFAP contents in hippocampus and cortex (p < 0.05). S100B contents increased only in frontal cortex in hyperhomocysteinemic rats compared to the control (p < 0.01) and was inhibited by melatonin treatment (p < 0.01). The present findings show that Hcy can sensitize glial cells, a mechanism which might contribute to the pathogenesis of neurodegenerative disorders, and further suggest that melatonin can be involved in protecting against the toxicity of Hcy by inhibiting free radical generation and stabilizing glial cell activity.  相似文献   

20.
目的:观察骨髓间充质干细胞(BMSC)移植对脑梗死大鼠神经功能恢复的影响,并对其相关机制进行探讨。方法:90只大鼠随机分为3组:假手术组、对照组、BMSC移植组,每组30只。对照组和BMSC移植组建立大鼠大脑中动脉阻塞(MCAO)模型,假手术组只需要分离大鼠颈部组织,而不造MCAO模型。BMSC移植组在MCAO模型术后1天经尾静脉注射1 mL/3×10~6 BMSC,对照组注射同剂量的生理盐水,于MCAO术后1 d、3 d、7 d、14 d、21 d、28 d、35 d、42 d、49 d分别对各组大鼠进行神经功能评分(mNSS),术后2个月对BMSC移植组及对照组大鼠脑组织进行免疫组化染色,检测MAP2、TUJ1、Ⅷ因子、GFAP的表达情况。结果:在治疗后的第7天至第35天,BMSC移植组mNSS均显著低于对照组(P0.05)。术后2个月,BMSC移植组MAP2、TUJ1、Ⅷ因子表达量显著高于对照组,而GFAP表达量显著低于于BMSC对照组(P0.01)。结论:BMSC移植可以促进脑梗死神经功能的恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号