首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The double cut and join (DCJ) model of genome rearrangement is well studied due to its mathematical simplicity and power to account for the many events that transform gene order. These studies have mostly been devoted to the understanding of minimum length scenarios transforming one genome into another. In this paper we search instead for rearrangement scenarios that minimize the number of rearrangements whose breakpoints are unlikely due to some biological criteria. One such criterion has recently become accessible due to the advent of the Hi-C experiment, facilitating the study of 3D spacial distance between breakpoint regions.

Results

We establish a link between the minimum number of unlikely rearrangements required by a scenario and the problem of finding a maximum edge-disjoint cycle packing on a certain transformed version of the adjacency graph. This link leads to a 3/2-approximation as well as an exact integer linear programming formulation for our problem, which we prove to be NP-complete. We also present experimental results on fruit flies, showing that Hi-C data is informative when used as a criterion for rearrangements.

Conclusions

A new variant of the weighted DCJ distance problem is addressed that ignores scenario length in its objective function. A solution to this problem provides a lower bound on the number of unlikely moves necessary when transforming one gene order into another. This lower bound aids in the study of rearrangement scenarios with respect to chromatin structure, and could eventually be used in the design of a fixed parameter algorithm with a more general objective function.
  相似文献   

2.
GRIMM: genome rearrangements web server   总被引:14,自引:0,他引:14  
SUMMARY: Genome Rearrangements In Man and Mouse (GRIMM) is a tool for analyzing rearrangements of gene orders in pairs of unichromosomal and multichromosomal genomes, with either signed or unsigned gene data. Although there are several programs for analyzing rearrangements in unichromosomal genomes, this is the first to analyze rearrangements in multichromosomal genomes. GRIMM also provides a new algorithm for analyzing comparative maps for which gene directions are unknown. AVAILABILITY: A web server, with instructions and sample data, is available at http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM.  相似文献   

3.
We review the combinatorial optimization problems in calculating edit distances between genomes and phylogenetic inference based on minimizing gene order changes. With a view to avoiding the computational cost and the "long branches attract" artifact of some tree-building methods, we explore the probabilization of genome rearrangement models prior to developing a methodology based on branch-length invariants. We characterize probabilistically the evolution of the structure of the gene adjacency set for reversals on unsigned circular genomes and, using a nontrivial recurrence relation, reversals on signed genomes. Concepts from the theory of invariants developed for the phylogenetics of homologous gene sequences can be used to derive a complete set of linear invariants for unsigned reversals, as well as for a mixed rearrangement model for signed genomes, though not for pure transposition or pure signed reversal models. The invariants are based on an extended Jukes-Cantor semigroup. We illustrate the use of these invariants to relate mitochondrial genomes from a number of invertebrate animals.  相似文献   

4.
We present an ontology for describing genomes, genome comparisons, their evolution and biological function. This ontology will support the development of novel genome comparison algorithms and aid the community in discussing genomic evolution. It provides a framework for communication about comparative genomics, and a basis upon which further automated analysis can be built. The nomenclature defined by the ontology will foster clearer communication between biologists, and also standardize terms used by data publishers in the results of analysis programs. The overriding aim of this ontology is the facilitation of consistent annotation of genomes through computational methods, rather than human annotators. To this end, the ontology includes definitions that support computer analysis and automated transfer of annotations between genomes, rather than relying upon human mediation.  相似文献   

5.
Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2 kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome.  相似文献   

6.
Developmentally regulated genome rearrangements (DRGR)--processes that alter genomes either in specific cells or during specific life cycle stages--are widespread throughout eukaryotes. This contrasts with the view that genome structure and content remain essentially constant throughout an organism's life cycle. Here we review three categories of developmentally regulated genome processing in eukaryotes: genome-wide rearrangements, targeted rearrangements, and a special case of amplification of ribosomal DNA genes. Mapping these types of DRGR onto eukaryotic phylogeny indicates that each type of processing is found in multiple independent lineages. We propose that such genome rearrangements were present within the last common ancestor of extant eukaryotes, and that future research will yield evidence of homologous epigenetic mechanisms underlying genome processing among diverse eukaryotes.  相似文献   

7.
Chromosomal rearrangements have been instrumental in genetic studies in Drosophila. Visibly marked deficiencies (deletions) are used in mapping studies and region-specific mutagenesis screens by providing segmental haploidy required to uncover recessive mutations. Marked recessive lethal inversions are used as balancer chromosomes to maintain recessive lethal mutations and to maintain the integrity of mutagenized chromosomes. In mice, studies on series of radiation-induced deletions that surround several visible mutations have yielded invaluable functional genomic information in the regions analyzed. However, most regions of the mouse genome are not accessible to such analyses due to a lack of marked chromosomal rearrangements. Here we describe a method to generate defined chromosomal rearrangements using the Cre--loxP recombination system based on a published strategy [R. Ramirez-Solis, P. Liu, and A. Bradley, (1995) Nature 378, 720--724]. Various types of rearrangements, such as deletions, duplications, inversions, and translocations, can be engineered using this strategy. Furthermore, the rearrangements can be visibly marked with coat color genes, providing essential reagents for large-scale recessive genetic screens in the mouse. The ability to generate marked chromosomal rearrangements will help to elevate the level of manipulative mouse genetics to that of Drosophila genetics.  相似文献   

8.
Mycoreovirus 1 (MyRV1) has 11 double-stranded RNA genome segments (S1 to S11) and confers hypovirulence to the chestnut blight fungus, Cryphonectria parasitica. MyRV1 genome rearrangements are frequently generated by a multifunctional protein, p29, encoded by a positive-strand RNA virus, Cryphonectria hypovirus 1. One of its functional roles is RNA silencing suppression. Here, we explored a possible link between MyRV1 genome rearrangements and the host RNA silencing pathway using wild-type (WT) and mutant strains of both MyRV1 and the host fungus. Host strains included deletion mutants of RNA silencing components such as dicer-like (dcl) and argonaute-like (agl) genes, while virus strains included an S4 internal deletion mutant MyRV1/S4ss. Consequently, intragenic rearrangements with nearly complete duplication of the three largest segments, i.e. S1, S2 and S3, were observed even more frequently in the RNA silencing-deficient strains Δdcl2 and Δagl2 infected with MyRV1/S4ss, but not with any other viral/host strain combinations. An interesting difference was noted between genome rearrangement events in the two host strains, i.e. generation of the rearrangement required prolonged culture for Δagl2 in comparison with Δdcl2. These results suggest a role for RNA silencing that suppresses genome rearrangements of a dsRNA virus.  相似文献   

9.
Historical analysis of studying chromosome changes in evolution allows better understanding of the current level of research in this area. Reorganizations of the genetic system due to chromosomal rearrangements have important evolutionary consequences and may lead to speciation. Despite the complexity of evaluating the primacy of chromosome changes in speciation events, such phenomena are possible and occur in nature, as recent studies have demonstrated.  相似文献   

10.
Mitochondrial (mt) genome organization in soybean was examined at the molecular level. This study builds upon previous reports that four soybean cytoplasmic groups, Bedford, Arksoy, Lincoln, and soja-forage, are differentiated by polymorphisms detected with a 2.3 kb Hind III mtDNA probe [12]. The variation detected results from DNA alterations in a region within and around a 4.8 kb repeat. The Bedford-type cytoplasm is the only cytoplasm that contains copies of a 4.8 kb repeat in four different genomic environments, evidence that it is recombinationally active. The Lincoln- and Arksoy-type cytoplasms each contain two copies of the repeat, as well as unique fragments that appear to result from rare recombination events outside, but near, the repeat. The soja-forage-type cytoplasm contains no complete copies of the repeat, but does contain a unique truncated version of the repeat. Sequence analysis indicates that the truncation is a result of recombination across a 9 bp repeated sequence, CCCCTCCCC. The structural rearrangements that have occurred in the region surrounding the 4.8 kb repeat may provide a means to dissect species relationships and evolution within the subgenus soja.  相似文献   

11.
The germ line genome of ciliates is extensively rearranged during development of the somatic macronucleus. Numerous sequences are eliminated, while others are amplified to a high ploidy level. In the Paramecium aurelia group of species, transformation of the maternal macronucleus with transgenes at high copy numbers can induce the deletion of homologous genes in sexual progeny, when a new macronucleus develops from the wild-type germ line. We show that this trans-nuclear effect correlates with homology-dependent silencing of maternal genes before autogamy and with the accumulation of approximately 22- to 23-nucleotide (nt) RNA molecules. The same effects are induced by feeding cells before meiosis with bacteria containing double-stranded RNA, suggesting that small interfering RNA-like molecules can target deletions. Furthermore, experimentally induced macronuclear deletions are spontaneously reproduced in subsequent sexual generations, and reintroduction of the missing gene into the variant macronucleus restores developmental amplification in sexual progeny. We discuss the possible roles of the approximately 22- to 23-nt RNAs in the targeting of deletions and the implications for the RNA-mediated genome-scanning process that is thought to determine developmentally regulated rearrangements in ciliates.  相似文献   

12.
Eukaryotes appear to evolve by micro and macro rearrangements. This is observed not only for long-term evolutionary adaptation, but also in short-term experimental evolution of yeast, Saccharomyces cerevisiae. Moreover, based on these and other experiments it has been postulated that repeat elements, retroposons for example, mediate such events. We study an evolutionary model in which genomes with retroposons and a breaking/repair mechanism are subjected to a changing environment. We show that retroposon-mediated rearrangements can be a beneficial mutational operator for short-term adaptations to a new environment. But simply having the ability of rearranging chromosomes does not imply an advantage over genomes in which only single-gene insertions and deletions occur. Instead, a structuring of the genome is needed: genes that need to be amplified (or deleted) in a new environment have to cluster. We show that genomes hosting retroposons, starting with a random order of genes, will in the long run become organized, which enables (fast) rearrangement-based adaptations to the environment. In other words, our model provides a "proof of principle" that genomes can structure themselves in order to increase the beneficial effect of chromosome rearrangements.  相似文献   

13.
We have used a new genetic strategy based on the Cre-loxP recombination system to generate large chromosomal rearrangements in Lactococcus lactis. Two loxP sites were sequentially integrated in inverse order into the chromosome either at random locations by transposition or at fixed points by homologous recombination. The recombination between the two chromosomal loxP sites was highly efficient (approximately 1 x 10(-1)/cell) when the Cre recombinase was provided in trans, and parental- or inverted-type chromosomal structures were isolated after removal of the Cre recombinase. The usefulness of this approach was demonstrated by creating three large inversions of 500, 1,115, and 1,160 kb in size that modified the lactococcal genome organization to different extents. The Cre-loxP recombination system described can potentially be used for other gram-positive bacteria without further modification.  相似文献   

14.
Template switching: from replication fork repair to genome rearrangements   总被引:4,自引:0,他引:4  
Branzei D  Foiani M 《Cell》2007,131(7):1228-1230
Genome rearrangements are a hallmark of human genomic disorders and occur largely through recombination mechanisms. In this issue, Lee et al. (2007) show that the complex nonrecurrent rearrangements observed in the dysmyelinating disorder Pelizaeus-Merzbacher disease (PMD) are likely to be caused by a replication mechanism involving template switching.  相似文献   

15.
A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identified events (758 IS insertions, 98 recombinations and 1 excision), we estimate that the rate of IS insertion is 3.5 × 10−4 insertions per genome per generation and the rate of IS homologous recombination is 4.5 × 10−5 recombinations per genome per generation. These events are mostly contributed by the IS elements IS1, IS2, IS5 and IS186. Spatial analysis of new insertions suggest that transposition is biased to proximal insertions, and the length spectrum of IS-caused deletions is largely explained by local hopping. For any of the ISs studied there is no region of the circular genome that is favored or disfavored for new insertions but there are notable hotspots for deletions. Some elements have preferences for non-coding sequence or for the beginning and end of coding regions, largely explained by target site motifs. Interestingly, transposition and deletion rates remain constant across the wild-type and 12 mutant E. coli lines, each deficient in a distinct DNA repair pathway. Finally, we characterized the target sites of four IS families, confirming previous results and characterizing a highly specific pattern at IS186 target-sites, 5′-GGGG(N6/N7)CCCC-3′. We also detected 48 long deletions not involving IS elements.  相似文献   

16.
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.  相似文献   

17.
18.
Hughes D 《Genome biology》2000,1(6):reviews0006.1-reviews00068
Inversions and translocations distinguish the genomes of closely related bacterial species, but most of these rearrangements preserve the relationship between the rearranged fragments and the axis of chromosome replication. Within species, such rearrangements are found less frequently, except in the case of clinical isolates of human pathogens, where rearrangements are very frequent  相似文献   

19.
Chromosomal rearrangements in the rye genome relative to that of wheat   总被引:13,自引:0,他引:13  
Summary An RFLP-based genetic map of Secale Cereale has provided evidence for multiple evolutionary translocations in the rye genome relative to that of hexaploid wheat. DNA clones which have previously been mapped in wheat indicated that chromosome arms 2RS, 3RL, 4RL, 5RL, 6RS, 6RL, 7RS and 7RL have all been involved in at least one translocation. A possible evolutionary pathway, which accounts for the present day R genome relative to the A, B and D genomes of wheat, is presented. The relevance of these results for strategies designed to transfer useful genes from rye, and probably other related species, to wheat is discussed.  相似文献   

20.
The genome of Sulfolobus solfataricus P2 carries a larger number of transposable elements than any other sequenced genome from an archaeon or bacterium and, as a consequence, may be particularly susceptible to rearrangement and change. In order to gain more insight into the natures and frequencies of different types of mutation and possible rearrangements that can occur in the genome, the pyrEF locus was examined for mutations that were isolated after selection with 5-fluoroorotic acid. About two-thirds of the 130 mutations resulted from insertions of mobile elements, including insertion sequence (IS) elements and a single nonautonomous mobile element, SM2. For each of these, the element was identified and shown to be present at its original genomic position, consistent with a progressive increase in the copy numbers of the mobile elements. In addition, several base pair substitutions, as well as small deletions, insertions, and a duplication, were observed, and about one-fifth of the mutations occurred elsewhere in the genome, possibly in an orotate transporter gene. One mutant exhibited a 5-kb genomic rearrangement at the pyrEF locus involving a two-step IS element-dependent reaction, and its boundaries were defined using a specially developed "in vitro library" strategy. Moreover, while searching for the donor mobile elements, evidence was found for two major changes that had occurred in the genome of strain P2, one constituting a single deletion of about 4% of the total genome (124 kb), while the other involved the inversion of a 25-kb region. Both were bordered by IS elements and were inferred to have arisen through recombination events. The results underline the caution required in working experimentally with an organism such as S. solfataricus with a continually changing genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号