首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Axonal transport of organelles has emerged as a key process in the regulation of neuronal differentiation and survival. Several components of this specialised transport machinery, their regulators and vesicular cargoes are mutated or altered in many neurodegenerative conditions. The molecular characterisation of these mechanisms has furthered our understanding of neuronal homeostasis, providing insights into the spatio-temporal control of membrane traffic and signalling in neurons with a precision not achievable in other cellular systems. Here, we summarise the recent advances in the field of axonal trafficking of different organelles, and the essential role of motor and adaptor proteins in this process.  相似文献   

2.
Kinesins are motor proteins that move cargoes such as vesicles, organelles and chromosomes along microtubules. They are best known for their role in axonal transport and in mitosis. There is a diverse family of kinesins, members of which differ in composition and functions. Roles of kinesins in diseases typically involve defective transport of cell components, transport of pathogens, or cell division.  相似文献   

3.
The molecular mechanisms that generate efficient and directed transport of proteins and organelles in axons remain poorly understood. In the past year, many studies have identified specific transmembrane or scaffold proteins that might link motor proteins to their cargoes. These studies have also identified previously unsuspected pathways and raised the intriguing possibility that pre-packaged groups of functionally related proteins are transported together in the axon. Evidence suggests that fast molecular motor proteins have a role in slow axonal transport, and the axonal transport machinery has been implicated in the genesis of neurodegenerative diseases.  相似文献   

4.
Polarized kinesin‐driven transport is crucial for development and maintenance of neuronal polarity. Kinesins are thought to recognize biochemical differences between axonal and dendritic microtubules in order to deliver their cargoes to the appropriate domain. To identify kinesins that mediate polarized transport, we prepared constitutively active versions of all the kinesins implicated in vesicle transport and expressed them in cultured hippocampal neurons. Seven kinesins translocated preferentially to axons and five translocated into both axons and dendrites. None translocated selectively to dendrites. Highly homologous members of the same subfamily displayed distinctly different translocation preferences and were differentially regulated during development. By expressing chimeric kinesins, we identified two microtubule‐binding elements within the motor domain that are important for selective translocation. We also discovered elements in the dimerization domain of kinesin‐2 motors that contribute to their selective translocation. These observations indicate that selective interactions between kinesin motor domains and microtubules can account for polarized transport to the axon, but not for selective dendritic transport.  相似文献   

5.
The organization of the cytoplasm is regulated by molecular motors which transport organelles and other cargoes along cytoskeleton tracks. Melanophores have pigment organelles or melanosomes that move along microtubules toward their minus and plus end by the action of cytoplasmic dynein and kinesin-2, respectively. In this work, we used single particle tracking to characterize the mechanical properties of motor-driven organelles during transport along microtubules. We tracked organelles with high temporal and spatial resolutions and characterized their dynamics perpendicular to the cytoskeleton track. The quantitative analysis of these data showed that the dynamics is due to a spring-like interaction between melanosomes and microtubules in a viscoelastic microenvironment. A model based on a generalized Langevin equation explained these observations and predicted that the stiffness measured for the motor complex acting as a linker between organelles and microtubules is ~ one order smaller than that determined for motor proteins in vitro. This result suggests that other biomolecules involved in the interaction between motors and organelles contribute to the mechanical properties of the motor complex. We hypothesise that the high flexibility observed for the motor linker may be required to improve the efficiency of the transport driven by multiple copies of motor molecules.  相似文献   

6.
D. D. Hurd  W. M. Saxton 《Genetics》1996,144(3):1075-1085
Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases.  相似文献   

7.
Axonal transport in neurons has been shown to be microtubule dependent, driven by the molecular motor proteins kinesin and dynein. However, organelles undergoing fast transport can often pause or rapidly change directions without apparent dissociation from their transport tracks. Cytoskeletal polymers such as neurofilaments and microtubules have also been shown to make infrequent but rapid movements in axons indicating that their transport is likely to involve molecular motors. In addition, neurons have multiple compartments that are devoid of microtubules where transport of organelles is still seen to occur. These areas are rich in other cytoskeletal polymers such as actin filaments. Transported organelles have been shown to associate with multiple motor proteins including myosins. This suggests that nonmicrotubule-based transport may be myosin driven. In this review we will focus our attention on myosin motors known to be present in neurons and evaluate the evidence that they contribute to transport or other functions in the different compartments of the neuron.  相似文献   

8.
Eukaryotic cells organize their cytoplasm by moving different organelles and macromolecular complexes along microtubules and actin filaments. These movements are powered by numerous motor proteins that must recognize their respective cargoes in order to function. Recently, several proteins that interact with motors have been identified by yeast two-hybrid and biochemical analyses, and their roles in transport are now being elucidated. In several cases, analysis of the binding partners helped to identify new transport pathways, new types of cargo, and transport regulated at the level of motor-cargo binding. We discuss here how different motors of the kinesin, dynein and myosin families recognize their cargo and how motor-cargo interactions are regulated.  相似文献   

9.
In axons, proper localization of proteins, vesicles, organelles, and other cargoes is accomplished by the highly regulated coordination of kinesins and dyneins, molecular motors that bind to cargoes and translocate them along microtubule (MT) tracks. Impairment of axonal transport is implicated in the pathogenesis of multiple neurodegenerative disorders including Alzheimer's and Huntington's diseases. To understand how MT‐based cargo motility is regulated and to delineate its role in neurodegeneration, it is critical to analyze the detailed dynamics of moving cargoes inside axons. Here, we present KymoAnalyzer, a software tool that facilitates the robust analysis of axonal transport from time‐lapse live‐imaging sequences. KymoAnalyzer is an open‐source software that automatically classifies particle trajectories and systematically calculates velocities, run lengths, pauses, and a wealth of other parameters that are characteristic of motor‐based transport. We anticipate that laboratories will easily use this package to unveil previously uncovered intracellular transport details of individually‐moving cargoes inside neurons.   相似文献   

10.
Cytoplasmic dynein is the multisubunit motor protein for retrograde movement of diverse cargoes to microtubule minus ends. Here, we investigate the function of dynein variants, defined by different intermediate chain (IC) isoforms, by expressing fluorescent ICs in neuronal cells. Green fluorescent protein (GFP)-IC incorporates into functional dynein complexes that copurify with membranous organelles. In living PC12 cell neurites, GFP-dynein puncta travel in both the anterograde and retrograde directions. In cultured hippocampal neurons, neurotrophin receptor tyrosine kinase B (TrkB) signaling endosomes are transported by cytoplasmic dynein containing the neuron-specific IC-1B isoform and not by dynein containing the ubiquitous IC-2C isoform. Similarly, organelles containing TrkB isolated from brain by immunoaffinity purification also contain dynein with IC-1 but not IC-2 isoforms. These data demonstrate that the IC isoforms define dynein populations that are selectively recruited to transport distinct cargoes.  相似文献   

11.
The cytoskeleton is crucial for the efficient and polarized transport of vesicles in intracellular membrane-sorting pathways. Recent studies have identified specific kinesin, dynein, and myosin motor proteins that mediate defined membrane transport steps. Important clues have also been uncovered about the nature of motor-protein receptors on vesicular cargoes and the molecular mechanisms of motor-protein regulation.  相似文献   

12.
Molecular motor proteins are responsible for long-range transport of vesicles and organelles. Recent works have elucidated the richness of the transport complex, with multiple teams of similar and dissimilar motors and their cofactors attached to individual cargoes. The interaction among these different proteins, and with the microtubules along which they translocate, results in the intricate patterns of cargo transport observed in cells. High-precision and high-bandwidth measurements are required to capture the dynamics of these interactions, yet the crowdedness in the cell necessitates performing such measurements in vitro. Here, we show that endogenous cargoes, lipid droplets purified from Drosophila embryos, can be used to perform high-precision and high-bandwidth optical trapping experiments to study motor regulation in vitro. Purified droplets have constituents of the endogenous transport complex attached to them and exhibit long-range motility. A novel method to determine the quality of the droplets for high-resolution measurements in an optical trap showed that they compare well with plastic beads in terms of roundness, homogeneity, position sensitivity, and trapping stiffness. Using high-resolution and high-bandwidth position measurements, we demonstrate that we can follow the series of binding and unbinding events that lead to the onset of active transport.  相似文献   

13.
Axons and dendrites differ in both microtubule organization and in the organelles and proteins they contain. Here we show that the microtubule motor dynein has a crucial role in polarized transport and in controlling the orientation of axonal microtubules in Drosophila melanogaster dendritic arborization (da) neurons. Changes in organelle distribution within the dendritic arbors of dynein mutant neurons correlate with a proximal shift in dendritic branch position. Dynein is also necessary for the dendrite-specific localization of Golgi outposts and the ion channel Pickpocket. Axonal microtubules are normally oriented uniformly plus-end-distal; however, without dynein, axons contain both plus- and minus-end distal microtubules. These data suggest that dynein is required for the distinguishing properties of the axon and dendrites: without dynein, dendritic organelles and proteins enter the axon and the axonal microtubules are no longer uniform in polarity.  相似文献   

14.
The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based transport to deliver essential cargo into dendrites. To test different models of differential motor protein regulation and to understand how different compartments in neurons are supplied with necessary functional proteins, we studied mechanisms of dendritic transport, using Drosophila as a model system. Our data suggest that dendritic targeting systems in Drosophila and mammals are evolutionarily conserved, since mammalian cargoes are moved into appropriate domains in Drosophila. In a genetic screen for mutants that mislocalize the dendritic marker human transferrin receptor (hTfR), we found that kinesin heavy chain (KHC) may function as a dendritic motor. Our analysis of dendritic and axonal phenotypes of KHC loss-of-function clones revealed a role for KHC in maintaining polarity of neurons, as well as ensuring proper axonal outgrowth. In addition we identified adenomatous polyposis coli 1 (APC1) as an interaction partner of KHC in controlling directed transport and modulating kinesin function in neurons.  相似文献   

15.
Understanding the mechanisms by which molecular motors coordinate their activities to transport vesicular cargoes within neurons requires the quantitative analysis of motor/cargo associations at the single vesicle level. The goal of this protocol is to use quantitative fluorescence microscopy to correlate (“map”) the position and directionality of movement of live cargo to the composition and relative amounts of motors associated with the same cargo. “Cargo mapping” consists of live imaging of fluorescently labeled cargoes moving in axons cultured on microfluidic devices, followed by chemical fixation during recording of live movement, and subsequent immunofluorescence (IF) staining of the exact same axonal regions with antibodies against motors. Colocalization between cargoes and their associated motors is assessed by assigning sub-pixel position coordinates to motor and cargo channels, by fitting Gaussian functions to the diffraction-limited point spread functions representing individual fluorescent point sources. Fixed cargo and motor images are subsequently superimposed to plots of cargo movement, to “map” them to their tracked trajectories. The strength of this protocol is the combination of live and IF data to record both the transport of vesicular cargoes in live cells and to determine the motors associated to these exact same vesicles. This technique overcomes previous challenges that use biochemical methods to determine the average motor composition of purified heterogeneous bulk vesicle populations, as these methods do not reveal compositions on single moving cargoes. Furthermore, this protocol can be adapted for the analysis of other transport and/or trafficking pathways in other cell types to correlate the movement of individual intracellular structures with their protein composition. Limitations of this protocol are the relatively low throughput due to low transfection efficiencies of cultured primary neurons and a limited field of view available for high-resolution imaging. Future applications could include methods to increase the number of neurons expressing fluorescently labeled cargoes.  相似文献   

16.
Kinesin superfamily proteins and their various functions and dynamics   总被引:7,自引:0,他引:7  
Kinesin superfamily proteins (KIFs) are motor proteins that transport membranous organelles and macromolecules fundamental for cellular functions along microtubules. Their roles in transport in axons and dendrites have been studied extensively, but KIFs are also used in intracellular transport in general. Recent findings have revealed that in many cases, the specific interaction of cargoes and motors is mediated via adaptor/scaffolding proteins. Cargoes are sorted to precise destinations, such as axons or dendrites. KIFs also participate in polarized transport in epithelial cells as shown in the apical transport of annexin XIIIb-containing vesicles by KIFC3. KIFs play important roles in higher order neuronal activity; transgenic mice overexpressing KIF17, which transports N-methyl-d-asp (NMDA) receptors to dendrites, show enhanced memory and learning. KIFs also play significant roles in neuronal development and brain wiring: KIF2A suppresses elongation of axon collaterals by its unique microtubule-depolymerizing activity. X-ray crystallography has revealed the structural uniqueness of KIF2 underlying the microtubule-depolymerizing activity. In addition, single molecule biophysics and optical trapping have shown that the motility of monomeric KIF1A is caused by biased Brownian movement, and X-ray crystallography has shown how the conformational changes occur for KIF1A to move during ATP hydrolysis. These multiple approaches in analyzing KIF functions will illuminate many basic mechanisms underlying intracellular events and will be a very promising and fruitful area for future studies.  相似文献   

17.
Molecular motor proteins are responsible for long-range transport of vesicles and organelles. Recent works have elucidated the richness of the transport complex, with multiple teams of similar and dissimilar motors and their cofactors attached to individual cargoes. The interaction among these different proteins, and with the microtubules along which they translocate, results in the intricate patterns of cargo transport observed in cells. High-precision and high-bandwidth measurements are required to capture the dynamics of these interactions, yet the crowdedness in the cell necessitates performing such measurements in vitro. Here, we show that endogenous cargoes, lipid droplets purified from Drosophila embryos, can be used to perform high-precision and high-bandwidth optical trapping experiments to study motor regulation in vitro. Purified droplets have constituents of the endogenous transport complex attached to them and exhibit long-range motility. A novel method to determine the quality of the droplets for high-resolution measurements in an optical trap showed that they compare well with plastic beads in terms of roundness, homogeneity, position sensitivity, and trapping stiffness. Using high-resolution and high-bandwidth position measurements, we demonstrate that we can follow the series of binding and unbinding events that lead to the onset of active transport.  相似文献   

18.
19.
Muresan  Virgil 《Brain Cell Biology》2000,29(11-12):799-818
A large number of membrane-bounded organelles, protein complexes, and mRNAs are transported along microtubules to different locations within the neuronal axon. Axonal transport in the anterograde direction is carried out by members of a superfamily of specialized motor proteins, the kinesins. All kinesins contain a conserved motor domain that hydrolyses ATP to generate movement along microtubules. Regions outside the motor domain are responsible for cargo binding and regulation of motor activity. Present in a soluble, inactive form in the cytoplasm, kinesins are activated upon cargo binding. Selective targeting of different types of kinesin motors to specific cargoes is directed by amino acid sequences situated in their variable tails. Cargo proteins with specific function at their destination, bind directly to specific kinesins for transport. Whereas most kinesins move to microtubule plus-ends, a small number of them move to microtubule minus-ends, and may participate in retrograde axonal transport. Axonal transport by kinesins has a logic: Fully assembled, multisubunit, functional complexes (e.g., ion channel complexes, signaling complexes, RNA-protein complexes) are transported to their destination by kinesin motors that interact transiently (i.e., during transport only) with one of the complexes' subunits.  相似文献   

20.
The downstream targets of amyloid β (Aβ)-oligomers remain elusive. One hypothesis is that Aβ-oligomers interrupt axonal transport. Although previous studies have demonstrated Aβ-induced transport blockade, early effects of low-n soluble Aβ-oligomers on axonal transport remain unclear. Furthermore, the cargo selectivity for such deficits (if any) or the specific effects of Aβ on the motility kinetics of transported cargoes are also unknown. Toward this, we visualized axonal transport of vesicles in cultured hippocampal neurons treated with picomolar (pm) levels of cell-derived soluble Aβ-oligomers. We examined select cargoes thought to move as distinct organelles and established imaging parameters that allow organelle tracking with consistency and high fidelity - analyzing all data in a blinded fashion. Aβ-oligomers induced early and selective diminutions in velocities of synaptic cargoes but had no effect on mitochondrial motility, contrary to previous reports. These changes were N-methyl D-aspartate receptor/glycogen synthase kinase-3β dependent and reversible upon washout of the oligomers. Cluster-mode analyses reveal selective attenuations in faster-moving synaptic vesicles, suggesting possible decreases in cargo/motor associations, and biochemical experiments implicate tau phosphorylation in the process. Collectively, the data provide a biological basis for Aβ-induced axonal transport deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号