首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xia  Huika  Hu  Qinrui  Li  Luojia  Tang  Xin  Zou  Jimei  Huang  Lvzhen  Li  Xiaoxin 《中国科学:生命科学英文版》2019,62(2):244-256
The aim of this study was to explore the role of autophagy in response to blue light damage in aged mice and in human retinal pigmented epithelium(hRPE) cells. Blue light damage to the retina was induced in 10-month-old(10 mo) C57 mice and hRPE cells. Flash electroretinography was used to assess retinal function. Retinal structure changes were observed by electron microscopy. Western blot was conducted to determine the expression levels of the following proteins: cleaved caspase-3, p38 mitogen-activated protein kinases, protein kinase R-like endoplasmic reticulum kinase(PERK), autophagy marker light chain 3(LC3), P62, and Beclin-1. On day 1 after light damage to the 10 mo mice, retinal function was changed. The latent periods of awave and b-wave were delayed, and amplitude was reduced. The electron microscopy results revealed mitochondria damage in the retinal pigmented epithelium and a disorganized photoreceptor outer segment(OS). PERK, LC3, and Beclin-1 were upregulated, whereas P62 was not. On day 5 after the blue light damage, restoration of electroretinography and OS was observed.PERK, LC3, and Beclin-1 were downregulated, whereas P62 was not. Protein changes in vitro were consistent with in vivo. The present study provided structural and functional evidence that autophagy plays an important role in the response to blue lightinduced retinal damage.  相似文献   

2.
3.
Erythropoietin (Epo) is upregulated by hypoxia and provides protection against apoptosis of erythroid progenitors in bone marrow and brain neurons. Here we show in the adult mouse retina that acute hypoxia dose-dependently stimulates expression of Epo, fibroblast growth factor 2 and vascular endothelial growth factor via hypoxia-inducible factor-1alpha (HIF-1alpha) stabilization. Hypoxic preconditioning protects retinal morphology and function against light-induced apoptosis by interfering with caspase-1 activation, a downstream event in the intracellular death cascade. In contrast, induction of activator protein-1, an early event in the light-stressed retina, is not affected by hypoxia. The Epo receptor required for Epo signaling localizes to photoreceptor cells. The protective effect of hypoxic preconditioning is mimicked by systemically applied Epo that crosses the blood retina barrier and prevents apoptosis even when given therapeutically after light insult. Application of Epo may, through the inhibition of apoptosis, be beneficial for the treatment of different forms of retinal disease.  相似文献   

4.
Endothelin receptors in light-induced retinal degeneration   总被引:1,自引:0,他引:1  
Excessive light exposure leads to retinal degeneration in albino animals and exacerbates the rate of photoreceptor apoptosis in several retinal diseases. In previous studies we have described the presence of endothelin-1 (ET-1) and its receptors (ET-A and ET-B) in different sites of the mouse retina, including the retinal pigment epithelium, the outer plexiform layer (OPL), astrocytes, the ganglion cell layer (GCL), and vascular endothelia. After light-induced degeneration of photoreceptors, endothelinergic structures disappear from the OPL, but ET-1 and ET-B immunoreactivities increase in astrocytes. Here, we present novel observations about the course of light-induced retinal degeneration in BALB-c mice exposed to 1500 lux during 4 days with or without treatment with tezosentan, a mixed endothelinergic antagonist. Retinal whole mounts were immunostained with anticleaved caspase-3 (CC-3) serum to identify apoptotic photoreceptor cells within the outer nuclear layer (ONL). Glial activation was measured as glial fibrillary acidic protein (GFAP) immunoreactivity in retinal whole mounts and in Western blots from retinal extracts. Tezosentan treatment significantly reduced both the number of CC3-immunoreactive cells and GFAP levels, suggesting that inhibition of endothelinergic receptors could play a role in photoreceptor survival. Using confocal double immunofluorescence, we have observed that ET-A seems to be localized in bipolar cell dendrites, whereas ET-B is localized in horizontal cells. Our observations suggest the existence of an endothelinergic mechanism modulating synaptic transmission in the OPL. This mechanism could perhaps explain the effects of tezosentan treatment on photoreceptor survival.  相似文献   

5.
Induction of apoptosis in the retina leads to cellular death by molecular mechanisms that are not well understood. Clusterin expression is increased in tissues undergoing apoptosis, including retinal neurodegenerative states, but the causal relationships remain to be clarified. To gain insight into clusterin's role in photoreceptor apoptosis, the cellular distribution of clusterin mRNA was compared with the pattern of apoptotic nuclear labelling in a rat model of light-induced retinal degeneration. In control retinal sections, clusterin mRNA was localized to the retinal pigment epithelium cells, photoreceptor inner segments, inner nuclear layer, and ganglion cell layer. Clusterin expression decreased in photoreceptors and retinal pigment epithelium cells, which progressively degenerated, and increased in preserved inner nuclear layer, in proportion to the duration of light exposure in both cyclic light- and dark-reared animals. These results suggest that clusterin is not causally involved in apoptotic mechanisms of photoreceptor death, but may relate to cytoprotective functions.  相似文献   

6.
Prolonged or high-intensity exposure to visible light leads to photoreceptor cell death. In this study, we demonstrate a novel pathway of light-induced photoreceptor apoptosis involving the low-affinity neurotrophin receptor p75 (p75NTR). Retinal degeneration upregulated both p75NTR and the high-affinity neurotrophin receptor TrkC in different parts of Müller glial cells. Exogenous neurotrophin-3 (NT-3) increased, but nerve growth factor (NGF) decreased basic fibroblast growth factor (bFGF) production in Müller cells, which can directly rescue photoreceptor apoptosis. Blockade of p75NTR prevented bFGF reduction and resulted in both structural and functional photoreceptor survival in vivo. Furthermore, the absence of p75NTR significantly prevented light-induced photoreceptor apoptosis. These observations implicate glial cells in the determination of neural cell survival, and suggest functional glial-neuronal cell interactions as new therapeutic targets for neurodegeneration.  相似文献   

7.
Lutein, a xanthophyll of a carotenoid, is anticipated as a therapeutic product to prevent human eye diseases. However, its biological mechanism is still unclear. Here, we show the molecular mechanism of lutein's effect to reduce photodamage of the retina. We analyzed the light-exposed retinas of Balb/c mice given lutein-supplemented or normal diet. Visual function was measured by electroretinogram, and histological changes were observed. Immunohistochemical and immunoblot analyses were performed to analyze molecular mechanism. The reactive oxygen species induced in the retina was evaluated by fluorescent probes. In the mice after light exposure, reduction of a-wave and b-wave amplitudes in electroretinogram, indicating visual impairment, and thinning of the photoreceptor cell layer owing to apoptosis were both attenuated by lutein diet. Interestingly, γ-H2AX, a marker for double-strand breaks (DSBs) in DNA, was up-regulated in the photoreceptor cells after light exposure, but this increase was attenuated by lutein diet, suggesting that DSBs caused by photodamage contributed to the photoreceptor cell death and that this change was suppressed by lutein. Moreover, the expression of eyes absent (EYA), which promotes DNA repair and cell survival, was significantly up-regulated with lutein diet in the light-exposed retina. Therefore, lutein induced EYA for DNA repair, which could suppress DNA damage and photoreceptor cell apoptosis. Lutein reduced light-induced oxidative stress in the retina, which might contribute to promote DNA repair. The lutein-supplemented diet attenuated light-induced visual impairment by protecting the photoreceptor cells' DNA.  相似文献   

8.
9.
Apoptotic cell death induced by kainic acid (KA) in cultures of rat cerebellar granule cells (CGC) and in different brain regions of Wistar rat pups on postnatal day 21 (P21) was studied. In vitro , KA (100–500 μM) induced a concentration-dependent loss of cell viability in MTT assay and cell death had apoptotic morphology as studied by chromatin staining with propidium iodide (PI). In vivo , twenty-four hours after induction of status epilepticus (SE) by an intraperitoneal KA injection (5 mg/kg) we quantified apoptotic cells in hippocampus (CA1 and CA3), parietal cortex and cerebellum using PI staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) technique. We report that dantrolene, a specific ryanodine receptor antagonist, was able to significantly reduce the apoptotic cell death in CGC cultures and in hyppocampal CA1 and parietal cortex regions. Our finding can be valuable for neuroprotective therapy strategies in patients with repeated generalized seizures or status epilepticus.  相似文献   

10.
Adenoviral-mediated transfer of ciliary neurotrophic factor (CNTF) to the retina rescued retinal ganglion cells (RGCs) from axotomy-induced apoptosis, presumably via activation of the high affinity CNTF receptor alpha (CNTFRalpha) expressed on RGCs. CNTF can also activate astrocytes, via its low affinity leukemia inhibitory receptor beta expressed on mature astrocytes, suggesting that CNTF may also protect injured neurons indirectly by modulating glia. Adenoviral-mediated overexpression of CNTF in normal and axotomized rat retinas was examined to determine if it could increase the expression of several glial markers previously demonstrated to have a neuroprotective function in the injured brain and retina. Using Western blotting, the expression of glial fibrillary acid protein (GFAP), glutamate/aspartate transporter-1 (GLAST-1), glutamine synthetase (GS), and connexin 43 (Cx43) was examined 7 days after intravitreal injections of Ad.CNTF or control Ad.LacZ. Compared to controls, intravitreal injection of Ad.CNTF led to significant changes in the expression of CNTFRalpha, pSTAT(3), GFAP, GLAST, GS, and Cx43 in normal and axotomized retinas. Taken together, these results suggest that the neuroprotective effects of CNTF may result from a shift of retinal glia cells to a more neuroprotective phenotype. Moreover, the modulation of astrocytes may buffer high concentrations of glutamate that have been shown to contribute to the death of RGCs after optic nerve transection.  相似文献   

11.
Plumbagin (PL), an active naphthoquinone compound, has been demonstrated to be a potential anticancer agent. However, the underlying anticancer mechanism is not fully understood. In this study, the human hepatocellular carcinoma (HCC) SMMC-7721 cell line was studied in an in vitro model. The cell proliferation was inhibited by PL in a dose- and time-dependent manner. Electron microscopy, acridine orange staining, and immunofluorescence were used to evaluate autophagosome formation and LC3 protein expression in PL-treated SMMC-7721 cells. Real-time polymerase chain reaction and Western blot showed that PL treatment suppressed the expression of apoptosis and autophagy factors (LC3, Beclin1, Atg7, and Atg5), which are associated with tumor apoptosis and autophagy in SMMC-7721 cells. In the study of in vitro tumor nude mouse models, PL can inhibit tumor growth. Cell apoptosis and autophagy of the transplanted tumors were evaluated by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot. In addition, in the in vivo studies of HCC cells, we found that pretreatment with the autophagy inhibitor 3-methyladenine blocked the formation of apoptosis induced by PL. In contrast, administration of the apoptosis inhibitor Z-VAD did not affect PL-induced autophagy. Taken together, our findings strongly suggest that PL is a promising drug with significant antitumor activity in HCC.  相似文献   

12.
13.
《Autophagy》2013,9(4):609-622
More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.  相似文献   

14.
More than 30 neurodegenerative diseases including Alzheimer disease (AD), frontotemporal lobe dementia (FTD), and some forms of Parkinson disease (PD) are characterized by the accumulation of an aggregated form of the microtubule-binding protein tau in neurites and as intracellular lesions called neurofibrillary tangles. Diseases with abnormal tau as part of the pathology are collectively known as the tauopathies. Methylthioninium chloride, also known as methylene blue (MB), has been shown to reduce tau levels in vitro and in vivo and several different mechanisms of action have been proposed. Herein we demonstrate that autophagy is a novel mechanism by which MB can reduce tau levels. Incubation with nanomolar concentrations of MB was sufficient to significantly reduce levels of tau both in organotypic brain slice cultures from a mouse model of FTD, and in cell models. Concomitantly, MB treatment altered the levels of LC3-II, cathepsin D, BECN1, and p62 suggesting that it was a potent inducer of autophagy. Further analysis of the signaling pathways induced by MB suggested a mode of action similar to rapamycin. Results were recapitulated in a transgenic mouse model of tauopathy administered MB orally at three different doses for two weeks. These data support the use of this drug as a therapeutic agent in neurodegenerative diseases.  相似文献   

15.
16.
ABSTRACT

Lipopolysaccharides (LPS)-induced retinal inflammation is an important factor in retinal diseases. This study was aimed to investigate the effect of Sirt6 on LPS-induced retinal injury. ARPE-19 cells were incubated with LPS to induce inflammation. The cell viability was determined using CCK-8 assay. The mRNA level and protein expression of corresponding genes was detected using qRT-PCR and western blot, respectively. The production of inflammatory cytokines was measured using ELISA kit. The levels of oxidative stress-related factors were measured using their detection kits. Cell apoptosis was observed using TUNEL assay. The results showed that Sirt6 was downregulated after LPS treatment. Sirt6 strengthened LPS-induced autophagy by promoting the expression of LC3II/I, beclin1 and ATG5. Sirt6 treatment significantly inhibited LPS-induced inflammation, oxidative stress and cell apoptosis, which was then partly abolished by 3 MA. These results suggest Sirt6 to be an important regulator for LPS-induced inflammation, oxidative stress, and apoptosis partly by regulating cell autophagy.  相似文献   

17.
RDH12 has been suggested to be one of the retinol dehydrogenases (RDH) involved in the vitamin A recycling system (visual cycle) in the eye. Loss of function mutations in the RDH12 gene were recently reported to be associated with autosomal recessive childhood-onset severe retinal dystrophy. Here we show that RDH12 localizes to the photoreceptor inner segments and that deletion of this gene in mice slows the kinetics of all-trans-retinal reduction, delaying dark adaptation. However, accelerated 11-cis-retinal production and increased susceptibility to light-induced photoreceptor apoptosis were also observed in Rdh12(-/-) mice, suggesting that RDH12 plays a unique, nonredundant role in the photoreceptor inner segments to regulate the flow of retinoids in the eye. Thus, severe visual impairments of individuals with null mutations in RDH12 may likely be caused by light damage(1).  相似文献   

18.
Autophagy plays a crucial role in cancer cell survival and the inhibition of autophagy is attracting attention as an emerging strategy for the treatment of cancer. Chloroquine (CQ) is an anti-malarial drug, and is also known as an inhibitor of autophagy. Recently, it has been found that CQ induces cancer cell death through the inhibition of autophagy; however, the underlying mechanism is not entirely understood. In this study, we identified the role of CQ-induced cancer cell death using Primary Effusion Lymphoma (PEL) cells. We found that a CQ treatment induced caspase-dependent apoptosis in vitro. CQ also suppressed PEL cell growth in a PEL xenograft mouse model. We showed that CQ activated endoplasmic reticulum (ER) stress signal pathways and induced CHOP, which is an inducer of apoptosis. CQ-induced cell death was significantly decreased by salbrinal, an ER stress inhibitor, indicating that CQ-induced apoptosis in PEL cells depended on ER stress. We show here for the first time that the inhibition of autophagy induces ER stress-mediated apoptosis in PEL cells. Thus, the inhibition of autophagy is a novel strategy for cancer chemotherapy.  相似文献   

19.
Zhang M  Xu G  Liu W  Ni Y  Zhou W 《PloS one》2012,7(4):e35446

Background

Excessive exposure to light enhances the progression and severity of some human retinal degenerative diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia, focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration.

Methodology/Principal Findings

Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague–Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor cell line (661W cell) was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1 neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble fractalkine resulted in fewer TUNEL-positive photoreceptors and an increased number of migratory microglia respectively.

Conclusions/Significance

These findings demonstrate that fractalkine/CX3CR1 interaction may play an important role in the photoreceptor-microglia cross-talk in light-induced photoreceptor degeneration.  相似文献   

20.
Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1–5 μM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 μg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE−/− mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号