首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and purposeDiosmetin (Dios), a flavonoid compound with multiple pharmacological activities. However, fewer studies have reported its effects on type 2 diabetic mellitus (T2DM). Here, we address the effect of Dios on glucose metabolism and gut microbiota in KK-Ay diabetic mice.MethodWild type C57BL/6 J mice or diabetic KK-Ay mice were treated with vehicle or Dios for one month. The ELISA kit and fluorescence microscope system were respectively employed to the evaluation of serum biochemical indicators and histopathological changes. Liver RNA-Seq and western blot were used to reveal the key signaling pathway. The effects of Dios on gut microbiota was investigated by the 16S rRNA gene sequencing, as well as the relationship between Dios and C. glu on glucose metabolism was explored with the C. glu transplantation.ResultsDios treatment significantly decreased blood glucose and increased serum insulin concentrations. RNA-Seq analysis found that the underlying action mechanism of Dios on T2DM was via modulating glucose metabolism, which was proved by up-regulating IRS/PI3K/AKT signaling pathway to promote glycogen synthesis and GLUT4 translocation. Besides, Dios treatment reshaped the unbalanced gut microbiota by suppressing the ratio of Firmicutes/Bacteroidetes and markedly increasing the richness of C. glu. Moreover, treatment with C. glu and Dios together could markedly ameliorate glucose metabolism by up-regulating IRS/PI3K/AKT signaling pathway to promote glycogen synthesis and GLUT4 translocation.ConclusionsDios treatment remarkably ameliorated glucose metabolism in KK-Ay diabetic mice by the regulation of C. glu via IRS/PI3K/AKT signaling pathway and reshaped the unbalanced gut microbiota. Our study provided evidence for the application of Dios to the treatment of T2DM.  相似文献   

2.
3.
目的 本研究旨在阐明青蒿素对II型糖尿病(T2DM)小鼠认知功能障碍的改善作用及其机制。方法 C57BL/6J小鼠单次腹腔注射STZ(100 mg/kg)后联合高脂饲料喂养建立T2DM模型。T2DM小鼠随后腹腔注射青蒿素(40 mg/kg/d)或等体积溶剂。干预4周后,新物体识别、Y迷宫和Morris水迷宫实验检测小鼠的学习和记忆能力。蛋白质印迹法(Western blot)检测海马PI3K、Akt、磷酸化Akt、SYN和PSD-95蛋白的表达。透射电镜观察海马CA1区突触密度和突触超微结构改变。结果 与模型组相比,青蒿素干预组T2DM小鼠的认知功能显著改善,海马中PI3K和磷酸化Akt水平升高,SYN和PSD-95蛋白表达增加,CA1区神经元丢失减少。此外,青蒿素干预组小鼠CA1区的突触密度、PSD-95和突触界面曲率增加,突触间隙宽度减小。结论 青蒿素可能通过激活海马PI3K/Akt途径增强突触可塑性,从而减轻T2DM小鼠认知功能障碍;青蒿素有望成为治疗糖尿病性认知功能障碍的新型药物。  相似文献   

4.
阿尔茨海默病(Alzheimer’s disease, AD)是一种以进行性痴呆为主要特征的中枢神经系统退行性疾病,其认知功能障碍可能与Ⅱ型糖尿病(type 2 diabetes, T2DM)诱发的胰岛素抵抗所损伤的PI3K/Akt胰岛素信号级联通路相关。胰岛素是调节机体新陈代谢的重要激素,通过与神经细胞表面的胰岛素受体结合激活PI3K/Akt信号通路,以调控葡萄糖、脂质的代谢。任何中间媒介功能紊乱所导致的脑胰岛素水平和胰岛素敏感性的降低都会损坏PI3K/Akt信号通路,诱发脑能量代谢障碍、Aβ沉积、Tau蛋白过度磷酸化,引起并加重AD认知功能障碍。因此,本文以PI3K/Akt胰岛素信号通路为主线,揭示了T2DM中脑胰岛素抵抗(insulin resistance, IR)与AD之间的复杂机制,旨在加深对脑IR介导的AD病理过程的系统性理解,借此为延缓或治疗AD的认知功能障碍提供理论基础。  相似文献   

5.
6.
7.
BackgroundOur previous study revealed that microRNA-125a-5p plays a crucial role in regulating hepatic glycolipid metabolism by targeting STAT3 in type 2 diabetes mellitus (T2DM). Dioscin, a major active ingredient in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in T2DM has not been reported.PurposeThe aim of this study was to investigate the effect of dioscin on T2DM and elucidate its potential mechanism.MethodsThe effect of dioscin on glycolipid metabolic disorder in insulin-induced HepG2 cells, palmitic acid-induced AML12 cells, high-fat diet- and streptozotocin- induced T2DM rats, and spontaneous T2DM KK-Ay mice were evaluated. Then, the possible mechanisms of dioscin were comprehensively evaluated.ResultsDioscin markedly alleviated the dysregulation of glycolipid metabolism in T2DM by reducing hyperglycemia and hyperlipidemia, improving insulin resistance, increasing hepatic glycogen content, and attenuating lipid accumulation. When the mechanism was investigated, dioscin was found to markedly elevate miR-125a-5p level and decrease STAT3 expression. Consequently, dioscin increased phosphorylation levels of STAT3, PI3K, AKT, GSK-3β, and FoxO1 and decreased gene levels of PEPCK, G6Pase, SREBP-1c, FAS, ACC, and SCD1, leading to an increase in glycogen synthesis and a decrease in gluconeogenesis and lipogenesis. The effects of dioscin on regulating miR-125a-5p/STAT3 pathway were verified by miR-125a-5p overexpression and STAT3 overexpression.ConclusionsDioscin showed potent anti-T2DM activity by improving the inhibitory effect of miR-125a-5p on STAT3 signaling to alleviate glycolipid metabolic disorder of T2DM.  相似文献   

8.

Background

Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established.

Methodology/Principal Findings

Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels.

Conclusions

Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.  相似文献   

9.
10.
11.
Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis.  相似文献   

12.
13.
14.
Baicalin is a flavonoid known to modify various redox-related biological activities. Included is its ability to suppress reactive species (RS) producing activity and modulate nuclear factor-κB through cellular redox regulation with enhanced thiol ability. FoxO regulates various genes that are known to be involved in cellular metabolism related to cell death and the oxidative stress response. One such case is the prevention of FoxO1 expression by activated insulin-induced phosphatidylinositol 3-kinase (PI3K)/Akt, which leads to increased oxidative stress and aging processes. In the present study, we attempted to elucidate the molecular modulation of antioxidant baicalin on the insulin-induced FoxO1 inactivation. We used HEK293T cultured cells and kidney tissue isolated from 24-month-old rats treated with baicalin at a dose of 10 or 20 mg/kg/day for 10 days. We found that baicalin enhanced catalase and suppressed RS production in cell system and in isolated kidney tissue in contrast to the nontreated aged rats. Results also showed activation of insulin signaling (PI3K/Akt), FoxO1 phosphorylation/acetylation and the down-regulation of catalase and manganese superoxide dismutase, both of which are FoxO1-targeting genes. Furthermore, baicalin-treated rats showed a decreased FoxO1 phosphorylation via PI3K/Akt cascade and FoxO1 acetylation by the cAMP-response element-binding protein binding protein (CBP). These results strongly suggest that treatment with baicalin influenced phosphorylation/acetylation of FoxO1 by up-regulating PI3K/Akt signaling through insulin in aged rats. Our results further reveal that baicalin regulated FoxO1 phosphorylation via PI3K/Akt by insulin and FoxO1 acetylation by the interaction of CBP and SIRT1, leading to changes in catalase gene expression during aging.  相似文献   

15.
16.
17.
《Phytomedicine》2015,22(9):837-846
PurposeThe current study investigated the efficacy of Cyclocarya paliurus chloroform extract (CPEC) and its two specific triterpenoids (cyclocaric acid B and cyclocarioside H) on the regulation of glucose disposal and the underlying mechanisms in 3T3-L1 adipocytes.MethodsMice and adipocytes were stimulated by macrophages-derived conditioned medium (Mac-CM) to induce insulin resistance. CPEC was evaluated in mice for its ability by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). To investigate the hypoglycemic mechanisms of CPEC and its two triterpenoids, glucose uptake, AMP-activated protein kinase (AMPK) activation, inhibitor of NF-κB kinase β (IKKβ) phosphorylation and insulin signaling transduction were detected in 3T3-L1 adipocytes using 2-NBDG uptake assay and Western blot analysis.ResultsMac-CM, an inflammatory stimulus which induced the glucose and insulin intolerance, increased phosphorylation of IKKβ, reduced glucose uptake and impaired insulin sensitivity. CPEC and two triterpenoids improved glucose consumption and increased AMPK phosphorylation under basal and inflammatory conditions. Moreover, CPEC and its two triterpenoids not only enhanced glucose uptake in an insulin-independent manner, but also restored insulin-mediated protein kinase B (Akt) phosphorylation by reducing the activation of IKKβ and regulating insulin receptor substrate-1 (IRS-1) serine/tyrosine phosphorylation. These beneficial effects were attenuated by AMPK inhibitor compound C, implying that the effects may be associated with AMPK activation.ConclusionsCPEC and its two triterpenoids promoted glucose uptake in the absence of insulin, as well as ameliorated IRS-1/PI3K/Akt pathway by inhibiting inflammation. These effects were related to the regulation of AMPK activity.  相似文献   

18.
Cell invasion by Trypanosoma cruzi extracellular amastigotes involves different signaling pathways to induce phagocytosis-like mechanisms. Previous works indicated that PI3K/Akt, Src and Erk might be involved in EA invasion; however, participation of these molecules in this process remains elusive. Here, we observed that EA activated Akt, Erk but not Src. Interference of EA invasion with specific inhibitors corroborated this observation. Our results show that EA is capable of selectively triggering complex signaling pathways. Activation of PI3K/Akt and Erk, kinases related to actin cytoskeleton rearrangement and phagocytosis, reinforces the idea that T. cruzi EA subverts the phagocytic machinery during invasion.  相似文献   

19.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKBα in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKBα and Akt2/PKBβ by ectopic expression of Akt1/PKBα but not Akt2/PKBβ. Akt1/PKBα was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKBα-deficient cells, but was restored after forced expression of Akt1/PKBα. Moreover, expression of p27Kip1, an inhibitor of the cell cycle, was down regulated in an Akt1/PKBα-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKBα isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27Kip1.  相似文献   

20.
Toxoplasma gondii results in ocular toxoplasmosis characterized by chorioretinitis with inflammation and necrosis of the neuroretina, pigment epithelium, and choroid. After invasion, T. gondii replicates in host cells before cell lysis, which releases the parasites to invade neighboring cells to repeat the life cycle and establish a chronic retinal infection. The mechanism by which T. gondii avoids innate immune defense, however, is unknown. Therefore, we determined whether PI3K/Akt signaling pathway activation by T. gondii is essential for subversion of host immunity and parasite proliferation. T. gondii infection or excretory/secretory protein (ESP) treatment of the human retinal pigment epithelium cell line ARPE-19 induced Akt phosphorylation, and PI3K inhibitors effectively reduced T. gondii proliferation in host cells. Furthermore, T. gondii reduced intracellular reactive oxygen species (ROS) while activating the PI3K/Akt signaling pathway. While searching for the main source of these ROS, we found that NADPH oxidase 4 (Nox4) was prominently expressed in ARPE-19 cells, and this expression was significantly reduced by T. gondii infection or ESP treatment along with decreased ROS levels. In addition, artificial reduction of host Nox4 levels with specific siRNA increased replication of intracellular T. gondii compared to controls. Interestingly, these T. gondii-induced effects were reversed by PI3K inhibitors, suggesting that activation of the PI3K/Akt signaling pathway is important for suppression of both Nox4 expression and ROS levels by T. gondii infection. These findings demonstrate that manipulation of the host PI3K/Akt signaling pathway and Nox4 gene expression is a novel mechanism involved in T. gondii survival and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号