首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During development, axonal growth cones are guided to their appropriate targets by many attractive and repulsive cues. It has become increasingly clear over the last few years that how the growth cone responds to these cues depends both on the molecular nature of the cue and on the internal state of the neuron. The unexpected result is that the same molecule can act as an attractor or as a repellent. A number of guidance cues used by neurons during development are retained in the adult nervous system, where their function is often still unclear. Most of these molecules are implicated in plasticity in the adult nervous system and can play a role (sometimes maladaptive) in neuronal regeneration after injury. A group of axonal guidance cues that has been well studied in development is the semaphorin family of secreted and membrane-anchored proteins, which has been implicated in axon steering, fasciculation, branching and synapse formation. This review focuses on semaphorin-3A (probably the best-characterized semaphorin) and its receptors (in particular neuropilin-1) in the adult nervous system and argues that semaphorin-3A plays a role in the maintenance and regeneration of adult sensory neurons.  相似文献   

2.
During neural development, neurons from downstream, presynaptic regions of the nervous system (such as the retina) send spatially patterned axonal projections to upstream, target regions (the tectum or superior colliculus). A servomechanism model has been proposed to explain the pattern and time-course of axonal growth between these two regions [Honda, H., 1998. Topographic mapping in the retinotectal projection by means of complementary ligand and receptor gradients: a computer simulation study. J. Theor. Biol., 192, 235-246]. Here, we show that a modification of this model incorporating a different criterion for axonal decision-making, called the local optimum rule, is guaranteed to converge to a topographic map under a wide range of conditions encountered during neural development. A theoretical investigation of these conditions leads to new hypotheses regarding map formation.  相似文献   

3.
Bamber BA  Rowland AM 《Autophagy》2006,2(3):247-249
In addition to its familiar role in non-selective bulk degradation of cellular material, autophagy can also bring about specific changes in the structure and function of cells. Autophagy has been proposed to operate in a substrate-selective mode to carry out this function, although evidence to demonstrate selectivity has been lacking. A recent study of synapse formation in the nervous system of the nematode Caenorhabditis elegans now provides experimental evidence for substrate-selective autophagy. Synapses form when presynaptic cells contact their postsynaptic partners during development. This contact induces the assembly of synaptically-localized protein complexes in the postsynaptic cell that contain scaffolding proteins and neurotransmitter receptors. When presynaptic contact was blocked, autophagy in the postsynaptic cell was induced. Substrate selectivity was evident in this system: the gamma-aminobutyric acid type A receptor (GABA(A) receptor), an integral-membrane neurotransmitter receptor, trafficked from the cell surface to autophagosomes. By contrast, the acetylcholine receptor, a structurally-similar neurotransmitter receptor, remained on the cell surface. This result provides experimental support for the idea that autophagy can bring about changes in cell structure and behavior by degrading specific cellular proteins, particularly cell surface receptors that are often important for regulating cell growth, differentiation and function.  相似文献   

4.
《Autophagy》2013,9(1):94-96
Autophagy, a regulated cellular degradation process responsible for the turnover of long-lived proteins and organelles, has been increasingly implicated in neurological disorders. Although autophagy is mostly viewed as a stress-induced process, recent studies have indicated that it is constitutively active in central nervous system (CNS) neurons and is protective against neurodegeneration. Neurons are highly specialized, post-mitotic cells that are typically composed of a soma (cell body), a dendritic tree and an axon. The detailed process of autophagy in such a highly differentiated cell type remains to be characterized. To elucidate the physiological role of neuronal autophagy, we generated mutant mice containing a neural cell type-specific deletion of Atg7, an essential gene for autophagy. Establishment of these mutant mice allowed us to examine cell-autonomous events in cerebellar Purkinje cells deficient in autophagy. Our data reveal the indispensability of autophagy in the maintenance of axonal homeostasis and the prevention of axonal dystrophy and degeneration. Furthermore, our study implicates dysfunction of axonal autophagy as a potential mechanism underlying axonopathy, which is linked to neurodegeneration associated with numerous human neurological disorders. Finally, our study has raised a possibility that “constitutive autophagy” in neurons involves processes that are not typical of autophagy in other cell types, but rather is highly adapted to local physiological function in the axon, which is projected in a distance from one neuron to another for transducing neural signals.

Addendum to: Komatsu M, Wang QJ, Holstein GR, Friedrich Jr. VL, Iwata J, Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci USA 2007; 104:14489-94.  相似文献   

5.
《Autophagy》2013,9(3):247-249
In addition to its familiar role in non-selective bulk degradation of cellular material, autophagy can also bring about specific changes in the structure and function of cells. Autophagy has been proposed to operate in a substrate-selective mode to carry out this function, although evidence to demonstrate selectivity has been lacking. A recent study of synapse formation in the nervous system of the nematode Caenorhabditis elegans now provides experimental evidence for substrate-selective autophagy. Synapses form when presynaptic cells contact their postsynaptic partners during development. This contact induces the assembly of synaptically-localized protein complexes in the postsynaptic cell that contain scaffolding proteins and neurotransmitter receptors. When presynaptic contact was blocked, autophagy in the postsynaptic cell was induced. Substrate selectivity was evident in this system: the g-aminobutyric acid type A receptor (GABAA receptor), an integral-membrane neurotransmitter receptor, trafficked from the cell surface to autophagosomes. By contrast, the acetylcholine receptor, a structurally-similar neurotransmitter receptor, remained on the cell surface. This result provides experimental support for the idea that autophagy can bring about changes in cell structure and behavior by degrading specific cellular proteins, particularly cell surface receptors that are often important for regulating cell growth, differentiation and function.

Addendum to:

Presynaptic Terminals Independently Regulate Synaptic Clustering and Autophagy of GABAA Receptors in Caenorhabditis elegans

.A.M. Rowland, J.E. Richmond, J.G. Olsen, D.H. Hall and B. A. Bamber

J Neurosci 2006; 26:1711-20  相似文献   

6.
7.
Yue Z  Wang QJ  Komatsu M 《Autophagy》2008,4(1):94-96
Autophagy, a regulated cellular degradation process responsible for the turnover of long-lived proteins and organelles, has been increasingly implicated in neurological disorders. Although autophagy is mostly viewed as a stress-induced process, recent studies have indicated that it is constitutively active in central nervous system (CNS) neurons and is protective against neurodegeneration. Neurons are highly specialized, post-mitotic cells that are typically composed of a soma (cell body), a dendritic tree and an axon. The detailed process of autophagy in such a highly differentiated cell type remains to be characterized. To elucidate the physiological role of neuronal autophagy, we generated mutant mice containing a neural cell type-specific deletion of Atg7, an essential gene for autophagy. Establishment of these mutant mice allowed us to examine cell-autonomous events in cerebellar Purkinje cells deficient in autophagy. Our data reveal the indispensability of autophagy in the maintenance of axonal homeostasis and the prevention of axonal dystrophy and degeneration. Furthermore, our study implicates dysfunction of axonal autophagy as a potential mechanism underlying axonopathy, which is linked to neurodegeneration associated with numerous human neurological disorders. Finally, our study has raised a possibility that "constitutive autophagy" in neurons involves processes that are not typical of autophagy in other cell types, but rather is highly adapted to local physiological function in the axon, which is projected in a distance from one neuron to another for transducing neural signals.  相似文献   

8.
How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system.  相似文献   

9.
Yue Z 《Autophagy》2007,3(2):139-141
Autophagy has recently emerged as potential drug target for prevention of neurodegeneration. However, the details of autophagy process and regulation in the central nervous system (CNS) are unclear. By using a neuronal excitotoxicity model mice, we engineered expression of a fluorescent autophagic marker and systematically investigated autophagic activity under neurodegenerative condition. The study reveals an early response of Purkinje cells to excitotoxic insult by induction of autophagy in axon terminals, and that axonal autophagy is particularly robust in comparison to the cell body and dendrites. The accessibility of axons to rapid autophagy induction suggests local biogenesis of autophagosomes in axons. Characterization of functional interaction between autophagosome protein LC3 and microtubule-associated protein 1B (MAP1B), which is involved in axonal growth, injury and transport provides evidence for neuron or axon-specific regulation of autophagosomes. Furthermore, we propose that p62/SQSTM1, a putative autophagic substrate can serve as a marker for evaluating impairment of autophagic degradation, which helps resolve the controversy over autophagy levels under various pathological conditions. Future study of the relationship between autophagy and axonal function (e.g., transport) will provide insight into the mechanism underlying axonopathy which is directly linked to neurodegeneration.  相似文献   

10.
《Autophagy》2013,9(2):139-141
Autophagy has recently emerged as potential drug target for prevention of neurodegeneration. However, the details of the autophagy process and regulation in the central nervous system (CNS) are unclear. By using a neuronal excitotoxicity model in mice, we engineered expression of a fluorescent autophagic marker and systematically investigated autophagic activity under neurodegenerative conditions. The study reveals an early response of Purkinje cells to excitotoxic insult by induction of autophagy in axon terminals, and that axonal autophagy is particularly robust in comparison to the cell body and dendrites. The accessibility of axons to rapid autophagy induction suggests local biogenesis of autophagosomes in axons. Characterization of functional interaction between autophagosome protein LC3 and microtubule-associated protein 1B (MAP1B), which is involved in axonal growth, injury and transport provides evidence for neuron- or axon-specific regulation of autophagosomes. Furthermore, we propose that p62/SQSTM1, a putative autophagic substrate, can serve as a marker for evaluating impairment of autophagic degradation, which helps resolve the controversy over autophagy levels under various pathological conditions. Future study of the relationship between autophagy and axonal function (e.g., transport) will provide insight into the mechanism underlying axonopathy which is directly linked to neurodegeneration.

Addendum to:

Induction of Autophagy in Axonal Dystrophy and Degeneration

Q.J. Wang, Y. Ding, Y. Zhong, D.S. Kohtz, N. Mizushima, I.M. Cristea, M.P. Rout, B.T. Chait, N. Heintz and Z. Yue

J Neurosci 2006; 26:8057-68  相似文献   

11.
Fulga TA  Van Vactor D 《Neuron》2008,57(3):339-344
The formation of the nervous system during embryonic development is controlled by a complex network of signaling pathways which ensure proper migration and targeting of neuronal projections. Likewise, the function of the adult nervous system relies on complex dynamic interactions between the presynaptic and postsynaptic terminals. Here, we review recent advances in understanding the molecular pathways underlying these seemingly distinct processes. These studies reveal that the conserved E3 ubiquitin ligase PHR (PAM, highwire Rpm-1) controls a regulatory protein degradation pathway essential both for axonal targeting during embryonic development as well as for the proper formation and function of neuron muscular junctions (NMJ).  相似文献   

12.
The control of dendrite development   总被引:19,自引:0,他引:19  
Jan YN  Jan LY 《Neuron》2003,40(2):229-242
Dendrite development is an important and unsolved problem in neuroscience. The nervous system is composed of a vast number of neurons with strikingly different morphology. Neurons are highly polarized cells with distinct subcellular compartments, including one or multiple dendritic processes arising from the cell body, and a single, extended axon. Communications between neurons involve synapses formed between axons of the presynaptic neurons and dendrites of the postsynaptic neurons. Extensive studies over the past decade have identified many molecules underlying axonal outgrowth and pathfinding. In contrast, the control of dendrite development is still much less well understood. However, recent progress has begun to shed light on the molecular mechanisms that orchestrate dendrite growth, arborization, and guidance.  相似文献   

13.
Specification and connectivity of neuronal subtypes in the sensory lineage   总被引:1,自引:0,他引:1  
During the development of the nervous system, many different types of neuron are produced. As well as forming the correct type of neuron, each must also establish precise connections. Recent findings show that, because of shared gene programmes, neuronal identity is intimately linked to and coordinated with axonal behaviour. Peripheral sensory neurons provide an excellent system in which to study these interactions. This review examines how neuronal diversity is created in the PNS and describes proteins that help to direct the diversity of neuronal subtypes, cell survival, axonal growth and the establishment of central patterns of modality-specific connections.  相似文献   

14.
15.
Investigation of axonal biology in the central nervous system (CNS) is hindered by a lack of an appropriate in vitro method to probe axons independently from cell bodies. Here we describe a microfluidic culture platform that polarizes the growth of CNS axons into a fluidically isolated environment without the use of targeting neurotrophins. In addition to its compatibility with live cell imaging, the platform can be used to (i) isolate CNS axons without somata or dendrites, facilitating biochemical analyses of pure axonal fractions and (ii) localize physical and chemical treatments to axons or somata. We report the first evidence that presynaptic (Syp) but not postsynaptic (Camk2a) mRNA is localized to developing rat cortical and hippocampal axons. The platform also serves as a straightforward, reproducible method to model CNS axonal injury and regeneration. The results presented here demonstrate several experimental paradigms using the microfluidic platform, which can greatly facilitate future studies in axonal biology.  相似文献   

16.
神经生长因子(NGF)促进中枢及外周神经系统神经元细胞存活、分化、轴突再生等重要作用已得到临床的广泛证实。目前临床上主要以局部或肌肉注射NGF蛋白的方式对神经系统的损伤进行治疗。但NGF半衰期短、局部应用副作用大、费用昂贵、难以透过血脑屏障等缺点而限制临床应用。长期以来,科研工作者致力于寻求一种理想的途径或方法以克服这一缺陷。随着基因工程技术的飞速发展,研究人员发现通过骨骼肌肌肉注射途径,以非病毒载体介导外源的NGF基因体内表达并逆轴突传递到神经损伤部位,有望解决这一难题。本文将就NGF及受体的基本结构和特性、逆轴突传递的机制、非病毒载体结合骨骼肌肌肉注射的基因治疗等方面进行总结和阐述。  相似文献   

17.
Understanding how immunoglobulin superfamily cell adhesion molecules (IgCAMs) regulate nervous system development has lagged behind studies on integrins and cadherins. The recent characterization of IgCAM structures combined with cell biological studies on protein-protein interactions and membrane targeting/trafficking demonstrate that IgCAMs interact in exceedingly complex ways to regulate axonal growth and pathfinding.  相似文献   

18.
19.
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.  相似文献   

20.
Kan Yang  Bin Yu  Cheng Cheng  Tianlin Cheng  Bo Yuan  Kai Li 《Autophagy》2017,13(10):1679-1696
In addition to the canonical role in protein homeostasis, autophagy has recently been found to be involved in axonal dystrophy and neurodegeneration. Whether autophagy may also be involved in neural development remains largely unclear. Here we report that Mir505–3p is a crucial regulator for axonal elongation and branching in vitro and in vivo, through modulating autophagy in neurons. We identify that the key target gene of Mir505–3p in neurons is Atg12, encoding ATG12 (autophagy-related 12) which is an essential component of the autophagy machinery during the initiation and expansion steps of autophagosome formation. Importantly, axonal development is compromised in brains of mir505 knockout mice, in which autophagy signaling and formation of autophagosomes are consistently enhanced. These results define Mir505–3p-ATG12 as a vital signaling cascade for axonal development via the autophagy pathway, further suggesting the critical role of autophagy in neural development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号