首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute myeloid leukemia (AML) is sustained by a population of cancer stem cells (CSCs or cancer-initiating cell). The mechanisms underlying switches from CSCs to non-CSCs in vivo remain to be understood. We address this issue in AML from the aspect of epigenetics using genome-wide screening for DNA methylation and selected histone modifications. We found no major differences in DNA methylation, especially in promoter CpG islands, between CSCs and non-CSCs. By contrast, we found thousands of genes that change H3K4me3 and/or H3K27me3 status between stem and progenitor cells as well as between progenitor and mature cells. Stem cell related pathways and proliferation or metabolism related pathways characterize genes differentially enriched for H3K4me3/H3K27me3 in stem and progenitor populations. Bivalent genes in stem cells are more plastic during differentiation and are more likely to lose H3K4me3 than to lose H3K27me3, consistent with increasingly closed chromatin state with differentiation. Our data indicates that histone modifications but not promoter DNA methylation are involved in switches from CSCs to non-CSCs in AML.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
First lineage specification in the mammalian embryo leads to formation of the inner cell mass (ICM) and trophectoderm (TE), which respectively give rise to embryonic and extraembryonic tissues. We show here that this first differentiation event is accompanied by asymmetric distribution of trimethylated histone H3 lysine 27 (H3K27me3) on promoters of signaling and developmentally-regulated genes in the mouse ICM and TE. A genome-wide survey of promoter occupancy by H3K4me3 and H3K27me3 indicates that both compartments harbor promoters enriched in either modification, and promoters co-enriched in trimethylated H3K4 and H3K27 linked to developmental and signaling functions. The majority of H3K4/K27me3 co-enriched promoters are distinct between the two lineages, primarily due to differences in the distribution of H3K27me3. Derivation of embryonic stem cells leads to significant losses and gains of H3K4/K27me3 co-enriched promoters relative to the ICM, with distinct contributions of (de)methylation events on K4 and K27. Our results show histone trimethylation asymmetry on promoters in the first two developmental lineages, and highlight an epigenetic skewing associated with embryonic stem cell derivation.  相似文献   

13.
Epigenetic mechanisms have important roles in carcinogenesis. We certified that the mRNA translation-related gene cytoplasmic polyadenylation element-binding protein 1 (CPEB1) is hypomethylated and overexpressed in glioma cells and tissues. The knockdown of CPEB1 reduced cell senescence by regulating the expression or distribution of p53 in glioma cells. CPEB1 is also regulated directly by the tumor suppressor miR-101, a potential marker of glioma. It is known that the histone methyltransferase enhancer of zeste homolog 2 (EZH2) and embryonic ectoderm development (EED) are direct targets of miR-101. We demonstrated that miR-101 downregulated the expression of CPEB1 through reversing the methylation status of the CPEB1 promoter by regulating the presence on the promoter of the methylation-related histones H3K4me2, H3K27me3, H3K9me3 and H4K20me3. The epigenetic regulation of H3K27me3 on CPEB1 promoter is mediated by EZH2 and EED. EZH2 has a role in the regulation of H3K4me2. Furthermore, the downregulation of CPEB1 induced senescence in a p53-dependent manner.  相似文献   

14.
15.

Background

Aberrational epigenetic marks are believed to play a major role in establishing the abnormal features of cancer cells. Rational use and development of drugs aimed at epigenetic processes requires an understanding of the range, extent, and roles of epigenetic reprogramming in cancer cells. Using ChIP-chip and MeDIP-chip approaches, we localized well-established and prevalent epigenetic marks (H3K27me3, H3K4me3, H3K9me3, DNA methylation) on a genome scale in several lines of putative glioma stem cells (brain tumor stem cells, BTSCs) and, for comparison, normal human fetal neural stem cells (fNSCs).

Results

We determined a substantial “core” set of promoters possessing each mark in every surveyed BTSC cell type, which largely overlapped the corresponding fNSC sets. However, there was substantial diversity among cell types in mark localization. We observed large differences among cell types in total number of H3K9me3+ positive promoters and peaks and in broad modifications (defined as >50 kb peak length) for H3K27me3 and, to a lesser extent, H3K9me3. We verified that a change in a broad modification affected gene expression of CACNG7. We detected large numbers of bivalent promoters, but most bivalent promoters did not display direct overlap of contrasting epigenetic marks, but rather occupied nearby regions of the proximal promoter. There were significant differences in the sets of promoters bearing bivalent marks in the different cell types and few consistent differences between fNSCs and BTSCs.

Conclusions

Overall, our “core set” data establishes sets of potential therapeutic targets, but the diversity in sets of sites and broad modifications among cell types underscores the need to carefully consider BTSC subtype variation in epigenetic therapy. Our results point toward substantial differences among cell types in the activity of the production/maintenance systems for H3K9me3 and for broad regions of modification (H3K27me3 or H3K9me3). Finally, the unexpected diversity in bivalent promoter sets among these multipotent cells indicates that bivalent promoters may play complex roles in the overall biology of these cells. These results provide key information for forming the basis for future rational drug therapy aimed at epigenetic processes in these cells.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-724) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.  相似文献   

18.
5-Aza-2′-deoxycitidine (5-Aza), an anticancer agent, results in substantial toxicity to male reproduction, causing a decline in sperm quality associated with reduced testosterone. Here, we report that 5-Aza increased the apoptotic protein Bad epigenetically in the testosterone-producing mouse TM3 Leydig cell line. 5-Aza decreased cell viability in a dose- and time-dependent manner with concomitant increase in Bad protein. This increase is accompanied by increased cleavages of both poly ADP ribose polymerase and caspase-3. Flow cytometric analysis further supported 5-Aza-derived apoptosis in TM3 cells. Bisulfite sequencing analysis failed to identify putative methylcytosine site(s) in CpG islands of the Bad promoter. A chromatin immunoprecipitation assay revealed decreased levels of trimethylation at lysine 27 of histone H3 (H3K27-3me) and H3K9-3me in the Bad promoter region in response to 5-Aza treatment. Knock-down by siRNA of enhancer of zeste homologue 2 (EZH2), a histone methyltransferase responsible for H3K27-3me, or demethylation of H3K9-3me by BIX-01294 showed significantly increased levels in Bad expression and consequent Leydig cell apoptosis. In conclusion, our results demonstrate for the first time that Bad expression is regulated at least by EZH2-mediated H3K27-3me or G9a-like protein/euchromatic histone methyltransferase 1 (GLP/Eu-HMTase1)-mediated H3K9-3me in mouse TM3 Leydig cells, which may be implicated in 5-Aza-derived toxicity to male reproduction.  相似文献   

19.
Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency.  相似文献   

20.
The expression of insulin-like growth factor 2 (IGF2), a classical imprinting gene, didn't completely correlate with its imprinting profiles in hepatocellular carcinoma (HCC). The mechanistic importance of promoter activity in regulation of IGF2 has not been fully clarified. Here we show that histone 3 lysine 4 trimethylation (H3K4me3) modified by menin-MLL complex of IGF2 promoter contributes to promoter activity of IGF2. The strong binding of menin and abundant H3K4me3 at the DNA demethylated P3/4 promoters were observed in Hep3B cells with the robust expression of IGF2. In IGF2-low-expressing HepG2 cells, menin didn't bind to DNA hypermethylated P3/4 regions; however, menin overexpression inhibited DNA methylation and promoted H3K4me3 at the P3/4 as well as IGF2 expression in HepG2. In addition, the H3K4me3 at P3/4 locus was activated in primary HCC specimens with high IGF2 expression. Furthermore, inhibition of the menin/MLL interaction via MI-2/3 reduced IGF2 expression, inhibited the IGF1R-AKT pathway, and significantly repressed HCC with robust expression of IGF2. Taken together, we conclude that H3K4me3 of P3/4 locus mediated by the menin-MLL complex is a novel epigenetic mechanism for releasing IGF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号