首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) and nephronophthisis (NPH) share two common features: cystic kidneys and ciliary localized gene products. Mutation in either the PKD1 or PKD2 gene accounts for 95% of all ADPKD cases. Mutation in one of four genes (NPHP1-4) results in nephronophthisis. The NPHP1, NPHP2, PKD1, and PKD2 protein products (nephrocystin-1, nephrocystin-2 or inversin, polycystin-1, and polycystin-2, respectively) localize to primary cilia of renal epithelia. However, the relationship between the nephrocystins and polycystins, if any, is unknown. In the nematode Caenorhabditis elegans, the LOV-1 and PKD-2 polycystins localize to male-specific sensory cilia and are required for male mating behaviors. To test the hypothesis that ADPKD and NPH cysts arise from a common defect in cilia, we characterized the C. elegans homologs of NPHP1 and NPHP4. C. elegans nphp-1 and nphp-4 are expressed in a subset of sensory neurons. GFP-tagged NPHP-1 and NPHP-4 proteins localize to ciliated sensory endings of dendrites and colocalize with PKD-2 in male-specific sensory cilia. The cilia of nphp-1(ok500) and nphp-4(tm925) mutants are intact. nphp-1; nphp-4 double, but not single, mutant males are response defective. We propose that NPHP-1 and NPHP-4 proteins play important and redundant roles in facilitating ciliary sensory signal transduction.  相似文献   

2.
Nephronophthisis (NPHP) is the most frequent genetic cause of end-stage renal failure in children and young adults. NPHP8/RPGRIP1L is a novel ciliary gene that, when mutated, in addition to causing NPHP, also causes Joubert syndrome (JBTS) and Meckel syndrome (MKS). The exact function of NPHP8 and how defects in NPHP8 lead to human diseases are poorly understood. Here, we studied the Caenorhabditis elegans homolog nphp-8 (C09G5.8) and explored the possible function of NPHP-8 in ciliated sensory neurons. We determined the gene structure of nphp-8 through rapid amplification of cDNA ends (RACE) analysis and discovered an X-box motif that had been previously overlooked. Moreover, NPHP-8 co-localized with NPHP-4 at the transition zone at the base of cilia. Mutation of nphp-8 led to abnormal dye filling (Dyf) and shorter cilia lengths in a subset of ciliary neurons. In addition, chemotaxis to several volatile attractants was significantly impaired in nphp-8 mutants. Our data suggest that NPHP-8/RPGRIP1L plays an important role in cilia formation and cilia-mediated chemosensation in a cell type-specific manner.  相似文献   

3.
Cilia are microtubule-based cellular organelles that mediate signal transduction. Cilia are organized into several structurally and functionally distinct compartments: the basal body, the transition zone (TZ), and the cilia shaft. In vertebrates, the cystoprotein Inversin localizes to a portion of the cilia shaft adjacent to the TZ, a region termed the “Inversin compartment” (InvC). The mechanisms that establish and maintain the InvC are unknown. In the roundworm C. elegans, the cilia shafts of amphid channel and phasmid sensory cilia are subdivided into two regions defined by different microtubule ultrastructure: a proximal doublet-based region adjacent to the TZ, and a distal singlet-based region. It has been suggested that C. elegans cilia also possess an InvC, similarly to mammalian primary cilia. Here we explored the biogenesis, structure, and composition of the C. elegans ciliary doublet region and InvC. We show that the InvC is conserved and distinct from the doublet region. nphp-2 (the C. elegans Inversin homolog) and the doublet region genes arl-13, klp-11, and unc-119 are redundantly required for ciliogenesis. InvC and doublet region genes can be sorted into two modules—nphp-2+klp-11 and arl-13+unc-119—which are both antagonized by the hdac-6 deacetylase. The genes of this network modulate the sizes of the NPHP-2 InvC and ARL-13 doublet region. Glutamylation, a tubulin post-translational modification, is not required for ciliary targeting of InvC and doublet region components; rather, glutamylation is modulated by nphp-2, arl-13, and unc-119. The ciliary targeting and restricted localization of NPHP-2, ARL-13, and UNC-119 does not require TZ-, doublet region, and InvC-associated genes. NPHP-2 does require its calcium binding EF hand domain for targeting to the InvC. We conclude that the C. elegans InvC is distinct from the doublet region, and that components in these two regions interact to regulate ciliogenesis via cilia placement, ciliary microtubule ultrastructure, and protein localization.  相似文献   

4.
5.
OSM-3 is a Kinesin-2 family member from Caenorhabditis elegans that is involved in intraflagellar transport (IFT), a process essential for the construction and maintenance of sensory cilia. In this study, using a single-molecule fluorescence assay, we show that bacterially expressed OSM-3 in solution does not move processively (multiple steps along a microtubule without dissociation) and displays low microtubule-stimulated adenosine triphosphatase (ATPase) activity. However, a point mutation (G444E) in a predicted hinge region of OSM-3's coiled-coil stalk as well as a deletion of that hinge activate ATPase activity and induce robust processive movement. These hinge mutations also cause a conformational change in OSM-3, causing it to adopt a more extended conformation. The motility of wild-type OSM-3 also can be activated by attaching the motor to beads in an optical trap, a situation that may mimic attachment to IFT cargo. Our results suggest that OSM-3 motility is repressed by an intramolecular interaction that involves folding about a central hinge and that IFT cargo binding relieves this autoinhibition in vivo. Interestingly, the G444E allele in C. elegans produces similar ciliary defects to an osm-3-null mutation, suggesting that autoinhibition is important for OSM-3's biological function.  相似文献   

6.
The Rhodobacter capsulatus genome contains three genes (olsA [plsC138], plsC316, and plsC3498) that are annotated as lysophosphatidic acid (1-acyl-sn-glycerol-3-phosphate) acyltransferase (AGPAT). Of these genes, olsA was previously shown to be an O-acyltransferase in the second step of ornithine lipid biosynthesis, which is important for optimal steady-state levels of c-type cytochromes (S. Aygun-Sunar, S. Mandaci, H.-G. Koch, I. V. J. Murray, H. Goldfine, and F. Daldal. Mol. Microbiol. 61:418-435, 2006). The roles of the remaining plsC316 and plsC3498 genes remained unknown. In this work, these genes were cloned, and chromosomal insertion-deletion mutations inactivating them were obtained to define their function. Characterization of these mutants indicated that, unlike the Escherichia coli plsC, neither plsC316 nor plsC3498 was essential in R. capsulatus. In contrast, no plsC316 olsA double mutant could be isolated, indicating that an intact copy of either olsA or plsC316 was required for R. capsulatus growth under the conditions tested. Compared to OlsA null mutants, PlsC316 null mutants contained ornithine lipid and had no c-type cytochrome-related phenotype. However, they exhibited slight growth impairment and highly altered total fatty acid and phospholipid profiles. Heterologous expression in an E. coli plsC(Ts) mutant of either R. capsulatus plsC316 or olsA gene products supported growth at a nonpermissive temperature, exhibited AGPAT activity in vitro, and restored phosphatidic acid biosynthesis. The more vigorous AGPAT activity displayed by PlsC316 suggested that plsC316 encodes the main AGPAT required for glycerophospholipid synthesis in R. capsulatus, while olsA acts as an alternative AGPAT that is specific for ornithine lipid synthesis. This study therefore revealed for the first time that some OlsA enzymes, like the enzyme of R. capsulatus, are bifunctional and involved in both membrane ornithine lipid and glycerophospholipid biosynthesis.  相似文献   

7.
The diversity of sensory cilia on Caenorhabditis elegans neurons allows the animal to detect a variety of sensory stimuli. Sensory cilia are assembled by intraflagellar transport (IFT) kinesins, which transport ciliary precursors, bound to IFT particles, along the ciliary axoneme for incorporation into ciliary structures. Using fluorescence microscopy of living animals and serial section electron microscopy of high pressure-frozen, freeze-substituted IFT motor mutants, we found that two IFT kinesins, homodimeric OSM-3 kinesin and heterotrimeric kinesin II, function in a partially redundant manner to build full-length amphid channel cilia but are completely redundant for building full-length amphid wing (AWC) cilia. This difference reflects cilia-specific differences in OSM-3 activity, which serves to extend distal singlets in channel cilia but not in AWC cilia, which lack such singlets. Moreover, AWC-specific chemotaxis assays reveal novel sensory functions for kinesin II in these wing cilia. We propose that kinesin II is a "canonical" IFT motor, whereas OSM-3 is an "accessory" IFT motor, and that subtle changes in the deployment or actions of these IFT kinesins can contribute to differences in cilia morphology, cilia function, and sensory perception.  相似文献   

8.
Mutant sensory cilia in the nematode Caenorhabditis elegans   总被引:13,自引:0,他引:13  
Eight classes of chemosensory neurons in C. elegans fill with fluorescein when living animals are placed in a dye solution. Fluorescein enters the neurons through their exposed sensory cilia. Mutations in 14 genes prevent dye uptake and disrupt chemosensory behaviors. Each of these genes affects the ultrastructure of the chemosensory cilia or their accessory cells. In each case, the cilia are shorter or less exposed than normal, suggesting that dye contact is the principal factor under selection. Ten genes affect many or all of the sensory cilia in the head. The daf-19 (m86) mutation eliminates all cilia, leaving only occasional centrioles in the dendrites. The cilia in che-13 (e1805), osm-1 (p808), osm-5 (p813), and osm-6 (p811) mutants have normal transition zones and severely shortened axonemes. Doublet-microtubules, attached to the membrane by Y links, assemble ectopically proximal to the cilia in these mutants. The amphid cilia in che-11 (e1810) are irregular in diameter and contain dark ground material in the middle of the axonemes. Certain mechanocilia are also affected. The amphid cilia in che-10 (e1809) apparently degenerate, leaving dendrites with bulb-shaped endings filled with dark ground material. The mechanocilia lack striated rootlets. Cilia defects have also been found in che-2, che-3, and daf-10 mutants. The osm-3 (p802) mutation specifically eliminates the distal segment of the amphid cilia. Mutations in three genes affect sensillar support cells. The che-12 (e1812) mutation eliminates matrix material normally secreted by the amphid sheath cell. The che-14 (e1960) mutation disrupts the joining of the amphid sheath and socket cells to form the receptor channel. A similar defect has been observed in daf-6 mutants. Four additional genes affect specific classes of ciliated sensory neurons. The mec-1 and mec-8 (e398) mutations disrupt the fasciculation of the amphid cilia. The cat-6 (e1861) mutation disrupts the tubular bodies of the CEP mechanocilia. A cryophilic thermotaxis mutant, ttx-1 (p767), lacks fingers on the AFD dendrite, suggesting this neuron is thermosensory.  相似文献   

9.
In most cilia, the axoneme can be subdivided into three segments: proximal (the transition zone), middle (with outer doublet microtubules), and distal (with singlet extensions of outer doublet microtubules). How the functionally distinct segments of the axoneme are assembled and maintained is not well understood. DYF-1 is a highly conserved ciliary protein containing tetratricopeptide repeats. In Caenorhabditis elegans, DYF-1 is specifically needed for assembly of the distal segment (G. Ou, O. E. Blacque, J. J. Snow, M. R. Leroux, and J. M. Scholey. Nature. 436:583-587, 2005). We show that Tetrahymena cells lacking an ortholog of DYF-1, Dyf1p, can assemble only extremely short axoneme remnants that have structural defects of diverse natures, including the absence of central pair and outer doublet microtubules and incomplete or absent B tubules on the outer microtubules. Thus, in Tetrahymena, DYF-1 is needed for either assembly or stability of the entire axoneme. Our observations support the conserved function for DYF-1 in axoneme assembly or stability but also show that the consequences of loss of DYF-1 for axoneme segments are organism specific.Cilia are microtubule-rich cellular extensions that arise from basal bodies near the surfaces of most eukaryotic cell types. Defective cilia cause a wide variety of diseases, including polycystic kidney disease, primary ciliary dyskinesia, and retinal degeneration (3). A typical motile cilium has a microtubule-based framework, the axoneme, which contains nine outer (mostly doublet) microtubules and two central (singlet) microtubules. In most cilia, the axoneme can be subdivided into three segments: proximal (transition zone), middle (containing outer doublet microtubules), and distal (containing singlet extensions of peripheral microtubules). The outer doublet microtubules of the middle segment have a complete tubule A made of 13 protofilaments and an incomplete tubule B made of 11 protofilaments that is fused to the wall of the A tubule (36, 57). The outer microtubules in the distal segment lack the B tubule (32, 49). The distal segment also lacks dynein arms and radial spokes, and its microtubules are terminated by caps that are associated with the plasma membranes at the tips of cilia (11, 50). The distal segments are characterized by a high level of microtubule turnover, which could play a role in the regulation of the length of cilia (31).The mechanisms that establish the segmental subdivision of the axoneme are not well understood. Studies of Caenorhabditis elegans indicate that the distal segment is assembled using a mechanism that differs from the one utilized in the middle and proximal segments (54). In most cell types, ciliogenesis is dependent on the intraflagellar transport (IFT) pathway, a bidirectional motility of protein aggregates, known as IFT particles, that occurs along outer microtubules (10, 28, 29, 42). IFT particles are believed to provide platforms for transport of axonemal precursors (23, 44). The anterograde component of IFT that delivers cargo from the cell body to the tips of cilia is carried out by kinesin-2 motors (28, 63), whereas the cytoplasmic dynein DHC1b is responsible for the retrograde IFT (41, 43, 53). Importantly, in the well-studied amphid cilia of C. elegans, two distinct kinesin-2 complexes are involved in the anterograde IFT and differ in movement velocity: the “slow” heterotrimeric kinesin-II and the “fast” homodimeric OSM-3 kinesin (54). While kinesin-II and OSM-3 work redundantly to assemble the middle segment, OSM-3 alone functions in the assembly of the distal segment (39, 56).In C. elegans, DYF-1 is specifically required for assembly of the distal segment (39). In the DYF-1 mutant, the rate of IFT in the remaining middle segment is reduced to the level of the slow kinesin-II, suggesting that the Osm3 complex is nonfunctional and that kinesin-II functions alone in the middle segment. Thus, DYF-1 could either activate OSM-3 kinesin or dock OSM-3 to IFT particles (14, 39).However, a recent study of zebrafish has led to a different model for DYF-1 function. Zebrafish embryos that are homozygous for a loss of function of fleer, an ortholog of DYF-1, have shortened olfactory and pronephric cilia and ultrastructural defects in the axonemes. In the middle segment, the fleer axonemes have B tubules that are disconnected from the A tubule, indicating that DYF-1 functions in the middle segment and could play a role in the stability of doublet microtubules (40). Earlier, a similar mutant phenotype was reported in Tetrahymena for a mutation in the C-terminal tail domain of β-tubulin, at the glutamic acid residues that are used by posttranslational polymodifications (glycylation and glutamylation) (47). Glycylation (46) and glutamylation (12) are conserved polymeric posttranslational modifications that affect tubulin and are highly enriched on microtubules of axonemes and centrioles (reviewed in reference 20). Other studies have indicated that tubulin glutamylation contributes to the assembly and stability of axonemes and centrioles (4, 8). The fleer mutant zebrafish cilia have reduced levels of glutamylated tubulin (40). Pathak and colleagues proposed that the primary role of DYF-1/fleer is to serve as an IFT cargo adapter for a tubulin glutamic acid ligase (25) and that the effects of lack of function of DYF-1/fleer could be caused by deficiency in tubulin glutamylation in the axoneme (40). As an alternative hypothesis, the same authors proposed that DYF-1 is a structural component that stabilizes the doublet microtubules in the axoneme (40).Here, we evaluate the significance of a DYF-1 ortholog, Dyf1p, in Tetrahymena thermophila. Unexpectedly, we found that Tetrahymena cells lacking Dyf1p either fail to assemble an axoneme or can assemble an axoneme remnant. While our observations revealed major differences in the significance of DYF-1 for segmental differentiation in diverse models, it is clear that DYF-1 is a conserved and critical component that is required for assembly of the axoneme.  相似文献   

10.
Mutations in genes encoding cilia proteins cause human ciliopathies, diverse disorders affecting many tissues. Individual genes can be linked to ciliopathies with dramatically different phenotypes, suggesting that genetic modifiers may participate in their pathogenesis. The ciliary transition zone contains two protein complexes affected in the ciliopathies Meckel syndrome (MKS) and nephronophthisis (NPHP). The BBSome is a third protein complex, affected in the ciliopathy Bardet-Biedl syndrome (BBS). We tested whether mutations in MKS, NPHP and BBS complex genes modify the phenotypic consequences of one another in both C. elegans and mice. To this end, we identified TCTN-1, the C. elegans ortholog of vertebrate MKS complex components called Tectonics, as an evolutionarily conserved transition zone protein. Neither disruption of TCTN-1 alone or together with MKS complex components abrogated ciliary structure in C. elegans. In contrast, disruption of TCTN-1 together with either of two NPHP complex components, NPHP-1 or NPHP-4, compromised ciliary structure. Similarly, disruption of an NPHP complex component and the BBS complex component BBS-5 individually did not compromise ciliary structure, but together did. As in nematodes, disrupting two components of the mouse MKS complex did not cause additive phenotypes compared to single mutants. However, disrupting both Tctn1 and either Nphp1 or Nphp4 exacerbated defects in ciliogenesis and cilia-associated developmental signaling, as did disrupting both Tctn1 and the BBSome component Bbs1. Thus, we demonstrate that ciliary complexes act in parallel to support ciliary function and suggest that human ciliopathy phenotypes are altered by genetic interactions between different ciliary biochemical complexes.  相似文献   

11.
The heterotrimeric motor protein, kinesin-II, and its presumptive cargo, can be observed moving anterogradely at 0.7 microm/s by intraflagellar transport (IFT) within sensory cilia of chemosensory neurons of living Caenorhabditis elegans, using a fluorescence microscope-based transport assay (Orozco, J.T., K.P. Wedaman, D. Signor, H. Brown, L. Rose, and J.M. Scholey. 1999. Nature. 398:674). Here, we report that kinesin-II, and two of its presumptive cargo molecules, OSM-1 and OSM-6, all move at approximately 1.1 microm/s in the retrograde direction along cilia and dendrites, which is consistent with the hypothesis that these proteins are retrieved from the distal endings of the cilia by a retrograde transport pathway that moves them along cilia and then dendrites, back to the neuronal cell body. To test the hypothesis that the minus end-directed microtubule motor protein, cytoplasmic dynein, drives this retrograde transport pathway, we visualized movement of kinesin-II and its cargo along dendrites and cilia in a che-3 cytoplasmic dynein mutant background, and observed an inhibition of retrograde transport in cilia but not in dendrites. In contrast, anterograde IFT proceeds normally in che-3 mutants. Thus, we propose that the class DHC1b cytoplasmic dynein, CHE-3, is specifically responsible for the retrograde transport of the anterograde motor, kinesin-II, and its cargo within sensory cilia, but not within dendrites.  相似文献   

12.
13.
Ethosuximide is a medication used to treat seizure disorders in humans, and we previously demonstrated that ethosuximide can delay age-related changes and extend the lifespan of the nematode Caenorhabditis elegans. The mechanism of action of ethosuximide in lifespan extension is unknown, and elucidating how ethosuximide functions is important for defining endogenous processes that influence lifespan and for exploring the potential of ethosuximide as a therapeutic for age-related diseases. To identify genes that mediate the activity of ethosuximide, we conducted a genetic screen and identified mutations in two genes, che-3 and osm-3, that cause resistance to ethosuximide-mediated toxicity. Mutations in che-3 and osm-3 cause defects in overlapping sets of chemosensory neurons, resulting in defective chemosensation and an extended lifespan. These findings suggest that ethosuximide extends lifespan by inhibiting the function of specific chemosensory neurons. This model is supported by the observation that ethosuximide-treated animals displayed numerous phenotypic similarities with mutants that have chemosensory defects, indicating that ethosuximide inhibits chemosensory function. Furthermore, ethosuximide extends lifespan by inhibiting chemosensation, since the long-lived osm-3 mutants were resistant to the lifespan extension caused by ethosuximide. These studies demonstrate a novel mechanism of action for a lifespan-extending drug and indicate that sensory perception has a critical role in controlling lifespan. Sensory perception also influences the lifespan of Drosophila, suggesting that sensory perception has an evolutionarily conserved role in lifespan control. These studies highlight the potential of ethosuximide and related drugs that modulate sensory perception to extend lifespan in diverse animals.  相似文献   

14.
DYF-1 is a highly conserved protein essential for ciliogenesis in several model organisms. In Caenorhabditis elegans, DYF-1 serves as an essential activator for an anterograde motor OSM-3 of intraflagellar transport (IFT), the ciliogenesis-required motility that mediates the transport of flagellar precursors and removal of turnover products. In zebrafish and Tetrahymena DYF-1 influences the cilia tubulin posttranslational modification and may have more ubiquitous function in ciliogenesis than OSM-3. Here we address how DYF-1 biochemically interacts with the IFT machinery by using the model organism Chlamydomonas reinhardtii, in which the anterograde IFT does not depend on OSM-3. Our results show that this protein is a stoichiometric component of the IFT particle complex B and interacts directly with complex B subunit IFT46. In concurrence with the established IFT protein nomenclature, DYF-1 is also named IFT70 after the apparent size of the protein. IFT70/CrDYF-1 is essential for the function of IFT in building the flagellum because the flagella of IFT70/CrDYF-1–depleted cells were greatly shortened. Together, these results demonstrate that IFT70/CrDYF-1 is a canonical subunit of IFT particle complex B and strongly support the hypothesis that the IFT machinery has species- and tissue-specific variations with functional ramifications.  相似文献   

15.
Plant acid invertases, which are either associated with the cell wall or present in vacuoles, belong to family 32 of glycoside hydrolases (GH32). Homology modeling of bamboo vacuolar invertase Boβfruct3 using Arabidopsis cell-wall invertase AtcwINV1 as a template showed that its overall structure is similar to GH32 enzymes, and that the three highly conserved motifs, NDPNG, RDP and EC, are located in the active site. This study also used site-directed mutagenesis to examine the roles of the conserved amino acid residues in these three motifs, which include Asp135, Arg259, Asp260, Glu316 and Cys317, and a conserved Trp residue (Trp159) that resides between the NDPNG and RDP motifs. The mutants W159F, W159L, E316Q and C317A retained acid invertase activity, but no invertase activity was observed for the mutant E316A or mutants with changes at Asp135, Arg259, or Asp260. The apparent Km values of the four mutants with invertase activity were all higher than that of the wild-type enzyme. The mutants W159L and E316Q exhibited lower kcat values than the wild-type enzyme, but an increase in the kcat value was observed for the mutants W159F and C317A. The results of this study demonstrate that these residues have individual functions in catalyzing sucrose hydrolysis.  相似文献   

16.
The structure of a number of F′ilv episomes derived from F14 by bacteriophage P1-mediated transduction have been determined by the electron microscope heteroduplex method. F16, F25, F310 and F312 are all simple deletion mutants of F14. F316 is essentially the same but contains a small insertion (0.8 kilobase) of DNA of unknown origin within the F sequences at 78.6 F. The length of these plasmids are all about the same as that of phage P1 DNA itself. The sequences of F and the sequences of bacterial DNA that are present on the episomes are contiguous on the parental F14. Thus, their structures are consistent with the usual model for the mechanism of P1 transduction. The physical order of ilv genes is also consistent with previous genetic mapping. From this order one can determine the polarity of the Escherichia coli K12 chromosomal sequences on F14 and its F′ilv derivatives relative to the F sequences. This order is consistent with the known counterclockwise transfer order of the parental Hfr AB313. F′ilv episomes carry only one copy of the 2.8 to 8.5 F sequence, which is present as a direct duplication on F14. The F′ilv episomes are genetically stable, whereas F14 is unstable because of reciprocal recombination between the two duplicate sequences. The strain F316/AB2070 is different in several respects. All of the bacteria carry P1 phage DNA. As noted above, F316 itself carries a small insertion. Two transfer-defective deletion mutants, F316Δ(65.4-78.6) and F316Δ-(78.6-0.6) are also present in the population of F316/AB2070 cells. In each case, the deletion borders on one of the junctions of inserted DNA and F14 DNA in F316. Thus, these junctions appear to be hot spots for deletion formation.  相似文献   

17.
Olfactory integration is important for survival in a natural habitat. However, how the nervous system processes signals of two odorants present simultaneously to generate a coherent behavioral response is poorly understood. Here, we characterize circuit basis for a form of olfactory integration in Caenorhabditis elegans. We find that the presence of a repulsive odorant, 2-nonanone, that signals threat strongly blocks the attraction of other odorants, such as isoamyl alcohol (IAA) or benzaldehyde, that signal food. Using a forward genetic screen, we found that genes known to regulate the structure and function of sensory neurons, osm-5 and osm-1, played a critical role in the integration process. Loss of these genes mildly reduces the response to the repellent 2-nonanone and disrupts the integration effect. Restoring the function of OSM-5 in either AWB or ASH, two sensory neurons known to mediate 2-nonanone-evoked avoidance, is sufficient to rescue. Sensory neurons AWB and downstream interneurons AVA, AIB, RIM that play critical roles in olfactory sensorimotor response are able to process signals generated by 2-nonanone or IAA or the mixture of the two odorants and contribute to the integration. Thus, our results identify redundant neural circuits that regulate the robust effect of a repulsive odorant to block responses to attractive odorants and uncover the neuronal and cellular basis for this complex olfactory task.  相似文献   

18.
Studies are reported on a chemoreception mutant which arose in a mutator strain. The mutant sensory neurons do not stain with fluoresceine isothiocyanate (Dyf phenotype), hence the name,dyf-1, given to the gene it identifies. The gene maps on LGI, 0.4 map units fromdpy-5 on theunc-11 side. The response of mutant worms to various repellents has been studied and shown to be partially altered. Other chemoreception based behaviors are less affected. The cilia of the sensory neurons of the amphid are shorter than normal and the primary defect may be in the capacity of the sheath cells to secrete the matrix material that fills the space between cilia in the amphid channel. Progress toward the molecular cloning of the gene is also reported. Relevant results from other laboratories are briefly reviewed.  相似文献   

19.
Sensory cilia and intraflagellar transport (IFT), a pathway essential for ciliogenesis, play important roles in embryonic development and cell differentiation. In vertebrate photoreceptors IFT is required for the early development of ciliated sensory outer segments (OS), an elaborate organelle that sequesters the many proteins comprising the phototransduction machinery. As in other cilia and flagella, heterotrimeric members of the kinesin 2 family have been implicated as the anterograde IFT motor in OS. However, in Caenorhabditis elegans, OSM-3, a homodimeric kinesin 2 motor, plays an essential role in some, but not all sensory cilia. Kif17, a vertebrate OSM-3 homologue, is known for its role in dendritic trafficking in neurons, but a function in ciliogenesis has not been determined. We show that in zebrafish Kif17 is widely expressed in the nervous system and retina. In photoreceptors Kif17 co-localizes with IFT proteins within the OS, and co-immunoprecipitates with IFT proteins. Knockdown of Kif17 has little if any effect in early embryogenesis, including the formation of motile sensory cilia in the pronephros. However, OS formation and targeting of the visual pigment protein is severely disrupted. Our analysis shows that Kif17 is essential for photoreceptor OS development, and suggests that Kif17 plays a cell type specific role in vertebrate ciliogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号