首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundTraditionally, seeds of Herpetospermum pedunculosum were used to treat liver disease or cholepathy. Up to date, their protecting effect against cholestasis was remain unclarified.PurposeTo investigate the efficacy, possible mechanisms, and active constituents of the ethyl acetate extract from the seeds of Herpetospermum pedunculosum (HPEAE), studies were carried out using cholestasis rat model induced by α-naphthylisothiocyanate (ANIT).MethodsMale rats were intragastrically treated with HPEAE (100, 200 or 400 mg/kg) once a day for 7 days and were modeled with ANIT (60 mg/kg). The levels of serum indicators, bile flow, and histopathology were evaluated. Indices of oxidative stress and inflammatory mediators were detected using the enzyme-linked immunosorbent assay. Western blotting method was employed for analyzing the protein levels in the signal pathways of farnesoid X receptor (FXR), kelch ech associating protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) and nuclear factor κB (NF-κB). The chemical compositions of HPEAE was analyzed by HPLC, and partially chemical components of HPEAE were identified by comparisons of their retention times with the standards. The FXR agonistic activity of the identified compounds was evaluated in l-02 cells induced by guggulsterone using a high-content screening system.ResultsThe cholestasis caused by ANIT can be significantly ameliorated by restoring the liver function indexes of alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, total bilirubin, direct bilirubin and total bile acid, which are dose-dependent, as well as pathological liver injury and bile flow. Mechanical studies suggested that HPEAE can activate the expression of FXR and then up regulate its downstream proteins (multidrug resistance-associated protein 2, bile salt export pump and Na+/taurocholate cotransporting polypeptide). Moreover, the levels of the active oxygen index glutathione, superoxide dismutase, glutathione peroxidase, catalase and malondialdehyde were markedly restored by treatment with HPEAE. Western blotting further confirmed that HPEAE up regulated the expression of quinone oxidoreductase 1, heme oxygenase 1 and Keap1, lowered the expression of Nrf2 and reduced oxidative stress. HPEAE also up regulated P-glycoprotein 65, phosphorylated P-glycoprotein 65 and inhibitor of NF-κB kinase α expression, down regulated inhibitor of NF-κB (IκB), restored inflammatory mediator tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6 and IL-10, and reduced inflammatory response. Fifteen compounds were identified (12 lignans and 3 coumarins). Among them, five lignans exhibited the significant FXR agonistic activity in vitro.ConclusionHPEAE may alleviate the cholestasis and liver injury caused by ANIT in rats by activating FXR, as well as suppressing the Keap1/Nrf2 and NF-κB signaling pathways and lignans may be its main active components.  相似文献   

2.
BackgroundCholestasis is characterized by accumulation of bile components in liver and systemic circulation. Restoration of bile acid homeostasis via activating farnesoid x receptor (FXR) is a promising strategy for the treatment of cholestasis. FXR-SHP (small heterodimer partner) axis plays an important role in maintaining bile acid homeostasis.PurposeTo investigate the anti-cholestasis effect of Dolomiaea souliei (Franch.) C.Shih (D. souliei) and clarify its underlying mechanism against α-naphthylisothiocyanate (ANIT) induced acute intrahepatic cholestasis.MethodsANIT-induced Sprague-Dawley rats were employed to investigate the anti-cholestasis effect of D. souliei ethyl acetate extract (DSE). Ursodeoxycholic acid (UDCA) was used as positive control. Bile flow and blood biochemical parameters were measured. Liver histopathological examination was conducted via hematoxylin-eosin staining. Western blot analysis was carried out to evaluate the protein levels related to bile acids metabolism and inflammation. The interactions between FXR and costunolide or dehydrocostus lactone, were conducted by molecular docking experiments. The effect of costunolide and dehydrocostus lactone on aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and FXR expression were also evaluated using guggulsterone-induced L02 cells.ResultsDSE could promote bile excretions and protect against ANIT-induced liver damage in cholestasis rats. Protein levels of FXR, SHP, Na+/taurocholate cotransporter (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) were increased and the expressions of cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) were decreased by DSE. Meanwhile, the anti-inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were also significantly increased, and the pro-inflammatory factor, interleukin-10 (IL-10), was significantly decreased in rats of DSE groups. Molecular docking revealed that costunolide and dehydrocostus lactone could be well docked into the FXR protein molecule, and hydrophobic interactions played the main function. Costunolide could reverse the increased AST and ALT levels and increase the FXR expression in guggulsterone-induced L02 cells.ConclusionDSE had an anti-cholestasis effect by activating FXR-SHP axis, inhibiting synthesis of bile acid, and increasing bile secretion, together with inflammatory response and improving liver injury. Costunolide may be the main active component. This study provided a potential therapeutic mechanism for D. souliei as an anti-cholestasis medicine in the treatment of cholestasis liver diseases.  相似文献   

3.
BackgroudCholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear.PurposeThis study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro.MethodsThe ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro.ResultsPicroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II.ConclusionOur findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.  相似文献   

4.

Background

The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions.

Principal Findings

Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTα, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4.

Conclusions

FXR antagonism in vivo results in a positive modulation of MRP4 expression in the liver and is a feasible strategy to target obstructive cholestasis.  相似文献   

5.
Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.  相似文献   

6.
Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.  相似文献   

7.
8.
9.
As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. With respect to the bone metabolism, FXR positively regulates bone metabolism through both bone formation and resorption of the bone remodeling pathways. Some of FXR agonists possessing isoxazole moiety are undergoing clinical trials for the treatment of non-alcoholic steatohepatitis. To date, therefore, the activation of FXR leads to considerable interest in FXR as potential therapeutic targets. We have identified a series of nonsteroidal FXR agonists bearing N1-methyl benzimidazole and isoxazole moieties that are bridged with aromatic derivatives. They showed affinity to FXR, but also weak affinity toward the vitamin D receptor (VDR) that involves regulation of calcium and phosphate homeostasis and is activated by bile acids. The deployment of FXR agonists without activity against VDR as off-target is therefore crucial in the development of FXR ligands. Our efforts focusing on increasing the agonist properties towards FXR led to the discovery of 19, which activates FXR at and below nanomolar levels (EC50 = 26.5 ± 10.5 nM TR-FRET and 0.8 ± 0.2 nM luciferase, respectively) and functions as a FXR agonist: the affinity toward FXR over eight nuclear receptors, including VDR [IC50 (VDR) / EC50 (FXR) > 5000] and TGR5, effects FXR target genes, and activates bone morphogenetic protein-2-induced differentiation of mouse bone marrow-derived mesenchymal stem cell-like ST2 cells into osteoblast.  相似文献   

10.
11.
12.
13.
14.
Obesity and its associated non-alcoholic fatty liver disease (NAFLD) have become epidemic medical problems worldwide; however, the current available therapeutic options are limited. Farnesoid X receptor (FXR) has recently emerged as an attractive target for obesity treatment. Here we demonstrate that isotschimgine (ITG), a constituent in genus Ferula, as a novel FXR agonist with anti-obesity and anti-hepatic steatosis effects. The results showed that ITG activated the FXR transactivity and bound with the ligand binding dormain (LBD) of FXR with gene reporter assays and AlphaScreen assays. In high-fat diet-induced obese (DIO) mice, ITG lowered body weight and fat mass, improved insulin resistance and hepatic steatosis. Mechanistic studies showed that ITG altered the expression levels of FXR downstream genes, lipid synthesis and energy metabolism genes in the liver of mice. Our findings suggest that ITG is a novel FXR agonist and may be a potential therapeutic choice for obesity associated with NAFLD.  相似文献   

15.
Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver. Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and activity. Moreover, overexpression of a constitutively active form of FXR induced ADH1A and ADH1B expression, whereas silencing of FXR abolished the effects of FXR agonists on ADH1 expression and activity. Transient transfection studies and electrophoretic mobility shift assays revealed functional FXR response elements in the ADH1A and ADH1B proximal promoters, thus indicating that both genes are direct targets of FXR. These findings provide the first evidence for direct connection of bile acid signaling and alcohol metabolism.  相似文献   

16.
17.
Activation of the nuclear farnesoid X receptor (FXR) which acts as cellular bile acid sensor has been validated as therapeutic strategy to counter liver disorders such as non-alcoholic steatohepatitis by the clinical efficacy of obeticholic acid. FXR antagonism, in contrast, is less well studied and potent small molecule FXR antagonists are rare. Here we report the systematic optimization of a novel class of FXR antagonists towards low nanomolar potency. The most optimized compound antagonizes baseline and agonist induced FXR activity in a full length FXR reporter gene assay and represses intrinsic expression of FXR regulated genes in hepatoma cells. With this activity and a favorable toxicity-, stability- and selectivity-profile it appears suitable to further study FXR antagonism in vitro and in vivo.  相似文献   

18.
BackgroundOur previous clinical research showed that the interaction between gut microbiota and bile acids (BAs) in patients with type 2 diabetes mellitus (T2DM) changed significantly. We hypothesized that T2DM could be improved by adjusting this interaction mediated by farnesoid X receptor (FXR). T2DM belongs to the category of “xiaoke” in traditional Chinese medicine. Radix scutellariae has the effects of clearing away heat and eliminating dampness, curing jaundice and quenching thirst and is widely used alone or in combination with other medicines for the treatment of T2DM in China and throughout Asia. Additionally, the interaction between Radix scutellariae and gut microbiota may influence its efficacy in the treatment of T2DM.PurposeThis study chose Radix scutellariae to validate that T2DM could improve by adjusting the interaction between gut microbiota and bile acid metabolism.Study design and methodsRadix scutellariae water extract (WESB) was administered to a T2DM rat model established by a high-fat diet combined with streptozotocin. The body weight and blood glucose and insulin levels were measured. The levels of serum lipids, creatinine, uric acid, albumin and total bile acid were also detected. Changes in the pathology and histology of the pancreas, liver and kidney were observed by haematoxylin-eosin staining. The 16S rRNAs of gut microbiota were sequenced, and the faecal and serum BAs were determined by liquid chromatography tandem mass spectrometry. The expression levels of BA metabolism-associated proteins in the liver and intestine were evaluated by immunoblot analysis.ResultsThe results showed that WESB improved hyperglycaemia, hyperlipaemia, and liver and kidney damage in T2DM rats. In addition, the abundances of key gut microbiota and the concentrations of certain secondary BAs in faeces and serum were restored. Moreover, there was a significant correlation between the restored gut microbiota and BAs, which might be related to the activation of liver cholesterol 7α-hydroxylase (CYP7A1) and the inhibition of FXR expression in the intestine rather than the liver.ConclusionsThis study provided new ideas for the prevention or treatment of clinical diabetes and its complications by adjusting the interaction between gut microbiota and bile acid metabolism.  相似文献   

19.
BackgroundPhellinus igniarius (L.) Quèl as a potential medicinal mushroom possesses multiple biological activities including hepatoprotection, but the hepatoprotective mechanism is not clear.PurposeTo elucidate the hepatoprotective effect and potential target of P. igniarius.MethodsThe male C57BL/6 mice were fed with the Lieber–DeCarli diet containing alcohol or isocaloric maltose dextrin as control diet with or without P. igniarius decoction (PID) in the dosage of 0.65 g/kg and 2.6 g/kg. The levels of serum biomarkers were detected by an automatic biochemistry analyser. The histopathological changes of liver were observed by hematoxylin and eosin (H&E) staining. Ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was applied for investigating the dynamic changes of serum metabolites in chronic ethanol-induced liver injury mice and after treatment with PID. Ingenuity pathway analysis (IPA) was employed to identify the potential target of PID.ResultsPID could significantly reduce the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG) and total bile acid (TBA) in serum and improved hepatic steatosis and inflammation. In terms of metabolism, a total of 36 serum differential metabolites were identified, and PID intervention regulated 24 of them, involving the key metabolic pathways such as the biosynthesis of unsaturated fatty acids, primary bile acid biosynthesis, glycerophospholipid metabolism, fatty acids biosynthesis, ether lipid metabolism and arachidonic acid metabolism. On the mechanism, IPA showed that farnesol X receptor (FXR) was the major potential target for PID, and PID could improve chronic alcohol intake induced by the inhibition of mRNA expression of FXR in the liver and the activation of mRNA expression of FXR in the intestine in mice.ConclusionThe present study for the first time systematically illustrated the hepatoprotective effect of P. igniarius and preliminarily explored its potential target FXR. P. igniarius might be exploited as a promising therapeutic option for alcoholic liver injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号