首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nitric oxide (NO) is known to be a potent messenger in the intracellular signal transduction system in many tissues. In pancreatic beta cells, NO has been reported to be formed from L-arginine through NO synthase. To elucidate the effect of NO on insulin secretion and to investigate the intracellular mechanism of its effect, we have used sodium nitroprusside (SNP) as a NO donor. SNP inhibited glucose-induced insulin secretion in a dose-dependent manner, and its effect was reversed by hemoglobin, a known NO scavenger. However, glyceraldehyde- induced insulin secretion was not affected by SNP. Since the closure of ATP-sensitive K+ channels (KATP channel) has been established as a key step in glucose-induced insulin secretion, we have directly assessed the effect of SNP on KATP channel activity using the patch clamp technique. The KATP channel activity reduced by glucose was found to be reversibly activated by the addition of SNP, and this activation was able to be similarly reproduced by applying S-Nitroso-N-acetyl-DL- penicillamine (SNAP), another NO generator. Furthermore, these activating effects were completely eliminated by hemoglobin, in accordance with the reversibility in inhibition of glucose-induced insulin release. However, SNP could not affect the KATP channel suppression by ATP applied to the inside of the plasma membrane. The activation of the KATP channel by NO, therefore, seems to be due to the decreased ATP production attributable to impairment of glucose metabolism in beta cells. Since SNP exhibited no effect on glyceraldehyde-induced KATP channel inhibition, NO may disturb a glycolytic step before glyceraldehyde-3-phosphate. The KATP channel activation by 2-deoxyglucose through presumable ATP consumption due to its phosphorylation by glucokinase was, however, not affected even in the presence of SNP. But in the permeabilized beta cells made by exposure to a low concentration (0.02 U/ml) of streptolysin O (open cell-attached configuration), SNP reopens KATP channels which have been eliminated by fructose-6-phosphate, while this effect was not observed in the KATP channels inhibited by fructose-1,6-bisphosphate. On the other hand, in rat ventricular myocyte KATP channels were not activated by SNP even under a low concentration of glucose. From these observations, the inhibition of phosphofructokinase activity is probably the site responsible for the impairment of glucose metabolism induced by NO in pancreatic beta cells. NO, therefore, seems to be a factor in the deterioration of glucose-induced insulin secretion from pancreatic beta cells through a unique intracellular mechanism.  相似文献   

2.
《Autophagy》2013,9(12):1757-1768
There is a growing evidence of the role of autophagy in pancreatic β cell homeostasis. During development of type 2 diabetes, β cells are required to supply the increased demand of insulin. In such a stage, β cells have to address high ER stress conditions that could lead to abnormal insulin secretion, and ultimately, β cell death and overt diabetes. In this study, we used insulin secretion-deficient β cells derived from fetal mice. These cells present an increased accumulation of polyubiquitinated protein aggregates and LC3B-positive puncta, when compared with insulinoma-derived β cell lines. We found that insulin secretion deficiency renders these cells hypersensitive to endoplasmic reticulum (ER) stress-mediated cell death. Chemical or shRNA-mediated inhibition of autophagy increased β cell death under ER stress. On the other hand, rapamycin treatment increased both autophagy and cell survival under ER stress. Insulin secretion-deficient β cells showed a marked reduction of the antiapoptotic protein BCL2, together with increased BAX expression and ERN1 hyperactivation upon ER stress induction. These results showed how insulin secretion deficiency in β cells may be contributing to ER stress-mediated cell death, and in this regard, we showed how the autophagic response plays a prosurvival role.  相似文献   

3.
Lipotoxicity leads to insulin secretion deficiency, which is among the important causes for the onset of type 2 diabetes mellitus. Thus, the restoration of β-cell mass and preservation of its endocrine function are long-sought goals in diabetes research. Previous studies have suggested that the membrane protein caveolin-1 (Cav-1) is implicated in β-cell apoptosis and insulin secretion, however, the underlying mechanisms still remains unclear. Our objective is to explore whether Cav-1 depletion protects pancreatic β cells from lipotoxicity and what are the underlying mechanisms. In this study, we found that Cav-1 silencing significantly promoted β-cell proliferation, inhibited palmitate (PA)-induced pancreatic β-cell apoptosis and enhanced insulin production and secretion. These effects were associated with enhanced activities of Akt and ERK1/2, which in turn downregulated the expression of cell cycle inhibitors (FOXO1, GSK3β, P21, P27 and P53) and upregulated the expression of Cyclin D2 and Cyclin D3. Subsequent inhibition of PI3K/Akt and ERK/MAPK pathways abolished Cav-1 depletion induced β-cell mass protection. Furthermore, under PA induced endoplasmic reticulum (ER) stress, Cav-1 silencing significantly reduced eIF2α phosphorylation and the expression of ER stress-responsive markers BiP and CHOP, which are among the known sensitizers of lipotoxicity. Our findings suggest Cav-1 as potential target molecule in T2DM treatment via the preservation of lipotoxicity-induced β-cell mass reduction and the attenuation of insulin secretion dysfunction.  相似文献   

4.
Type 2 diabetes mellitus is thought to be partially associated with endoplasmic reticulum (ER) stress toxicity on pancreatic beta cells and the result of decreased insulin synthesis and secretion. In this study, we showed that a well-known insulin sensitizer, metformin, directly protects against dysfunction and death of ER stress-induced NIT-1 cells (a mouse pancreatic beta cell line) via AMP-activated protein kinase (AMPK) and phosphatidylinositol-3 (PI3) kinase activation. We also showed that exposure of NIT-1 cells to metformin (5mM) increases cellular resistance against ER stress-induced NIT-1 cell dysfunction and death. AMPK and PI3 kinase inhibitors abolished the effect of metformin on cell function and death. Metformin-mediated protective effects on ER stress-induced apoptosis were not a result of an unfolded protein response or the induced inhibitors of apoptotic proteins. In addition, we showed that exposure of ER stressed-induced NIT-1 cells to metformin decreases the phosphorylation of c-Jun NH(2) terminal kinase (JNK). These data suggest that metformin is an important determinant of ER stress-induced apoptosis in NIT-1 cells and may have implications for ER stress-mediated pancreatic beta cell destruction via regulation of the AMPK-PI3 kinase-JNK pathway.  相似文献   

5.
There is a growing evidence of the role of autophagy in pancreatic β cell homeostasis. During development of type 2 diabetes, β cells are required to supply the increased demand of insulin. In such a stage, β cells have to address high ER stress conditions that could lead to abnormal insulin secretion, and ultimately, β cell death and overt diabetes. In this study, we used insulin secretion-deficient β cells derived from fetal mice. These cells present an increased accumulation of polyubiquitinated protein aggregates and LC3B-positive puncta, when compared with insulinoma-derived β cell lines. We found that insulin secretion deficiency renders these cells hypersensitive to endoplasmic reticulum (ER) stress-mediated cell death. Chemical or shRNA-mediated inhibition of autophagy increased β cell death under ER stress. On the other hand, rapamycin treatment increased both autophagy and cell survival under ER stress. Insulin secretion-deficient β cells showed a marked reduction of the antiapoptotic protein BCL2, together with increased BAX expression and ERN1 hyperactivation upon ER stress induction. These results showed how insulin secretion deficiency in β cells may be contributing to ER stress-mediated cell death, and in this regard, we showed how the autophagic response plays a prosurvival role.  相似文献   

6.
Tight glycemic control in individuals with diabetes mellitus is essential to prevent or delay its complications. Present treatments to reduce hyperglycemia mainly target the ATP-sensitive K(+) (K(ATP)) channel of pancreatic beta cells to increase insulin secretion. These current approaches are often associated with the side effect of hypoglycemia. Here we show that inhibition of the activity of cyclin-dependent kinase 5 (Cdk5) enhanced insulin secretion under conditions of stimulation by high glucose but not low glucose in MIN6 cells and pancreatic islets. The role of Cdk5 in regulation of insulin secretion was confirmed in pancreatic beta cells deficient in p35, an activator of Cdk5. p35-knockout mice also showed enhanced insulin secretion in response to a glucose challenge. Cdk5 kinase inhibition enhanced the inward whole-cell Ca(2+) channel current and increased Ca(2+) influx across the L-type voltage-dependent Ca(2+) channel (L-VDCC) upon stimulation with high glucose in beta cells, but had no effect on Ca(2+) influx without glucose stimulation. The inhibitory regulation by Cdk5 on the L-VDCC was attributed to the phosphorylation of loop II-III of the alpha(1C) subunit of L-VDCC at Ser783, which prevented the binding to SNARE proteins and subsequently resulted in a decrease of the activity of L-VDCC. These results suggest that Cdk5/p35 may be a drug target for the regulation of glucose-stimulated insulin secretion.  相似文献   

7.
Diabetes is caused by impaired insulin secretion in pancreatic beta-cells and peripheral insulin resistance. Overload of pancreatic beta-cells leads to beta-cell exhaustion and finally to the development of diabetes. Reduced beta-cell mass is evident in type 2 diabetes, and apoptosis is implicated in this process. One characteristic feature of beta-cells is highly developed endoplasmic reticulum (ER) due to a heavy engagement in insulin secretion. The ER serves several important functions, including post-translational modification, folding, and assembly of newly synthesized secretory proteins, and its proper function is essential to cell survival. Various conditions can interfere with ER function and these conditions are called ER stress. Recently, we found that nitric oxide (NO)-induced apoptosis in beta-cells is mediated by the ER-stress pathway. NO causes ER stress and leads to apoptosis through induction of ER stress-associated apoptosis factor CHOP. The Akita mouse with a missense mutation (Cys96Tyr) in the insulin 2 gene has hyperglycemia and a reduced beta-cell mass. This mutation disrupts a disulfide bond between A and B chains of insulin and may induce its conformational change. In the development of diabetes in Akita mice, mRNAs for an ER chaperone Bip and CHOP were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta-cells induced CHOP expression and led to apoptosis. Targeted disruption of the CHOP gene did not delay the onset of diabetes in the homozygous Akita mice, but it protected islet cells from apoptosis and delayed the onset of diabetes in the heterozygous Akita mice. We conclude that ER overload in beta-cells causes ER stress and leads to apoptosis via CHOP induction. These results highlight the importance of chronic ER stress in beta-cell apoptosis in type 2 diabetes, and suggest a new target to the management of the disease.  相似文献   

8.
Non-insulin dependent diabetes mellitus (NIDDM) is characterized by a specific defect in glucose recognition by the pancreatic islet beta cell. This is in clear distinction to patients with insulin dependent diabetes mellitus (IDDM) who undergo pancreatic islet beta cell death and no longer have the ability to synthesize, store, and release insulin. Defective glucose-induced first phase insulin responses in patients with NIDDM can be partially restored by exogenous insulin treatment and by other pharmacologic therapy. These observations provide strength for the theory of glucose desensitization of the pancreatic beta cell as an important secondary defect in the pathogenesis of abnormal insulin secretion in NIDDM. However, even though defective insulin secretion is an essential part of the pathogenesis of NIDDM, in itself it is not sufficient. A multiplicative effect is required involving interaction between tissue resistance to insulin action and defective insulin secretion whose product is the syndrome of NIDDM.  相似文献   

9.
《Cell calcium》2009,45(6):533-544
Calcium (Ca2+) signaling regulates insulin secretion in pancreatic β-cells. STIM1 has been proposed to function as an endoplasmic reticulum (ER) Ca2+ sensor regulating store-operated Ca2+ entry (SOCE). Here we studied the translocation of EYFP-STIM1 in response to ER calcium depletion in mouse insulinoma MIN6 cells by fluorescent microscopy. While in resting cells EYFP-STIM1 is co-localized with an ER marker, in thapsigargin (Tg)-stimulated cells it occupied highly defined areas of the peri-PM space in punctae adjacent to, but not entirely coincident with the ER. Co-staining with fluorescent phalloidin revealed that EYFP-STIM1 punctae was located in actin-poor areas. Use of the SOCE blocker in MIN6 cells, 2-aminoethoxy diphenylborate (2-APB), prevented store depletion-dependent translocation of EYFP-STIM1 to the PM in a concentration-dependent (3.75–100 μM) and reversible manner. TIRF microscopy revealed that 2-APB treatment led to the reversible disappearance of peri-PM EYFP-STIM1 punctae, while the ER structure in this compartment remained grossly unaffected. We conclude from this data that in these cells EYFP-STIM1 is delivered to a peri-PM location from the ER upon store depletion and this trafficking is reversibly blocked by 2-APB.  相似文献   

10.
The anorexigenic neuropeptide NEFA/nucleobindin 2 (NUCB2)/nesfatin-1-containing neurons are distributed in the brain regions involved in feeding regulation. In spite of the growing knowledge of its physiological functions through extensive studies, its molecular mechanism of reaction, including its receptor, remains unknown. NUCB2/nesfatin-1 is also involved in various peripheral regulations, including glucose homeostasis. In pancreatic beta-cells, NUCB2/nesfatin-1 is reported to enhance glucose-stimulated insulin secretion (GSIS) but its exact mechanism remains unknown.To clarify this mechanism, we measured the effect of nesfatin-1 on the electrical activity of pancreatic beta-cells. Using mouse primary beta cells, we measured changes in the ATP-sensitive K+ (KATP) channel current, the voltage-gated K+ (Kv) channel current, and insulin secretion upon application of nesfatin-1.Nesfatin-1 inhibited the Kv channel, but KATP channel activity was unaffected. Nesfatin-1 enhanced insulin secretion to a same level as Kv channel blocker tetraethylammonium (TEA). The effect was not further enhanced when nesfatin-1 and TEA were applied simultaneously. The inhibition binding assay with [125I]nesfatin-1 in Kv2.1 channels, major contributor of Kv current in beta cell, expressing HEK239 cells indicated the binding of nesfatin-1 on Kv2.1 channel.Because Kv channel inhibition enhances insulin secretion under high glucose conditions, our present data suggest a possible mechanism of nesfatin-1 on enhancing GSIS through regulation of ion channels rather than its unidentified receptor.  相似文献   

11.
Calcium (Ca2+) signaling regulates insulin secretion in pancreatic β-cells. STIM1 has been proposed to function as an endoplasmic reticulum (ER) Ca2+ sensor regulating store-operated Ca2+ entry (SOCE). Here we studied the translocation of EYFP-STIM1 in response to ER calcium depletion in mouse insulinoma MIN6 cells by fluorescent microscopy. While in resting cells EYFP-STIM1 is co-localized with an ER marker, in thapsigargin (Tg)-stimulated cells it occupied highly defined areas of the peri-PM space in punctae adjacent to, but not entirely coincident with the ER. Co-staining with fluorescent phalloidin revealed that EYFP-STIM1 punctae was located in actin-poor areas. Use of the SOCE blocker in MIN6 cells, 2-aminoethoxy diphenylborate (2-APB), prevented store depletion-dependent translocation of EYFP-STIM1 to the PM in a concentration-dependent (3.75–100 μM) and reversible manner. TIRF microscopy revealed that 2-APB treatment led to the reversible disappearance of peri-PM EYFP-STIM1 punctae, while the ER structure in this compartment remained grossly unaffected. We conclude from this data that in these cells EYFP-STIM1 is delivered to a peri-PM location from the ER upon store depletion and this trafficking is reversibly blocked by 2-APB.  相似文献   

12.
Neurotensin (NT) is secreted from neurons and gastrointestinal endocrine cells. We previously reported that the three NT receptors (NTSRs) are expressed in pancreatic islets and beta cell lines on which we observed a protective effect of NT against cytotoxic agents. In this study, we explored the role of NT on insulin secretion in the endocrine pancreatic beta cells. We observed that NT stimulates insulin secretion at low glucose level and has a small inhibiting effect on stimulated insulin secretion from isolated islets or INS-1E cells. We studied the mechanisms by which NT elicited calcium concentration changes using fura-2 loaded islets or INS-1E cells. NT increases calcium influx through the opening of cationic channels. Similar calcium influxes were observed after treatment with NTSR selective ligands. NT-evoked calcium regulation involves PKC and the translocation of PKCα and PKC? to the plasma membrane. Part of NT effects appears to be also mediated by PKA but not via the Erk pathway. Taken together, these data provide evidence for an important endocrine role of NT in the regulation of the secretory function of beta cells.  相似文献   

13.
Role of GPR40 in fatty acid action on the beta cell line INS-1E   总被引:7,自引:0,他引:7  
GPR40 is a G protein-coupled receptor expressed preferentially in beta cells, that has been implicated in mediating free fatty acid-stimulated insulin release. GPR40 RNAi impaired the ability of palmitic acid (PA) to increase both insulin secretion and intracellular calcium ([Ca2+]i). The PA-dependent [Ca2+]i increase was attenuated by inhibitors of Galphaq, PLC, and SERCA. Thus GPR40 activates the Galphaq pathway, leading to release of Ca2+ from the ER. Yet the GPR40-dependent [Ca2+]i rise was dependent on extracellular Ca2+ and elevated glucose, and was blocked by inhibition of L-type calcium channels (LTCC) or opening of the K(ATP) channel; this suggests that GPR40 promotes Ca2+ influx through up-regulation of LTCC pre-activated by glucose and membrane depolarization. Taken together, the data indicate that GPR40 mediates the increase in [Ca2+]i and insulin secretion through the Galphaq-PLC pathway, resulting in release of Ca2+ from the ER and leading to up-regulation of Ca2+ influx via LTCC.  相似文献   

14.
High-voltage-activated (HVA) calcium channels are known to be the primary source of calcium for glucose-stimulated insulin secretion. However, few studies have investigated how these channels can be regulated by chronically elevated levels of glucose. In the present study, we determined the level of expression of the four major HVA calcium channels (N-type, P/Q-type, L(C)-type, and L(D)-type) in rat pancreatic beta-cells. Using quantitative real-time PCR (QRT-PCR), we found the expression of all four HVA genes in rat insulinoma cells (INS-1) and in primary isolated rat islet cells. We then determined the role of each channel in insulin secretion by using channel-selective antagonists. Insulin secretion analysis revealed that N- and L-type channels are both involved in immediate glucose-induced insulin secretion. However, L-type was preferentially coupled to secretion at later time points. P/Q-type channels were not found to play a role in insulin secretion at any stage. It was also found that long-term exposure to elevated glucose increases basal calcium in these cells. Interestingly, chronically elevated glucose decreased the mRNA expression of the channels involved with insulin secretion and diminished the level of stimulated calcium influx in these cells. Using whole cell patch clamp, we found that N- and L-type channel currents increase gradually subsequent to lower intracellular calcium perfusion, suggesting that these channels may be regulated by glucose-induced changes in calcium.  相似文献   

15.
Ion channels in beta cells regulate electrical and secretory activity in response to metabolic, pharmacologic, or neural signals by controlling the permeability to K+ and Ca2+. The ATP-sensitive K+ channels act as a switch that responds to fuel secretagogues or sulfonylureas to initiate depolarization. This depolarization opens voltage-dependent calcium channels (VDCC) to increase the amplitude of free cytosolic Ca2+ levels ([Ca2+]i), which triggers exocytosis. Acetyl choline and vasopressin (VP) both potentiate the acute effects of glucose on insulin secretion by generating inositol 1,4,5-trisphosphate to release intracellular Ca2+; VP also potentiates sustained insulin secretion by effects on depolarization. In contrast, inhibitors of insulin secretion decrease [Ca2+]i by either hyperpolarizing the beta cell or by receptor-mediated, G-protein-coupled effects to decrease VDCC activity. Repolarization is initiated by voltage- and Ca(2+)-activated K+ channels. A human insulinoma voltage-dependent K+ channel cDNA was recently cloned and two types of alpha 1 subunits of the VDCC have been identified in insulin-secreting cell lines. Determining how ion channels regulate insulin secretion in normal and diabetic beta cells should provide pathophysiologic insight into the beta cell signal transduction defect characteristic of non-insulin dependent diabetes (NIDDM).  相似文献   

16.
Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing alpha(1H) T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.  相似文献   

17.
18.
Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells. The role played by autoantibodies directed against beta cells antigens in the pathogenesis of the disease is still unclear. Coxsackievirus B infection has been linked to the onset of type 1 diabetes; however its precise role has not been elucidated yet. To clarify these issues, we screened a random peptide library with sera obtained from 58 patients with recent onset type 1 diabetes, before insulin therapy. We identified an immunodominant peptide recognized by the majority of individual patients’sera, that shares homology with Coxsackievirus B4 VP1 protein and with beta-cell specific autoantigens such as phogrin, phosphofructokinase and voltage-gated L-type calcium channels known to regulate beta cell apoptosis. Antibodies against the peptide affinity-purified from patients’ sera, recognized the viral protein and autoantigens; moreover, such antibodies induced apoptosis of the beta cells upon binding the L-type calcium channels expressed on the beta cell surface, suggesting a calcium dependent mechanism. Our results provide evidence that in autoimmune diabetes a subset of anti-Coxsackievirus antibodies are able to induce apoptosis of pancreatic beta cells which is considered the most critical and final step in the development of autoimmune diabetes without which clinical manifestations do not occur.  相似文献   

19.
We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca2+ leak using synthetic Ca2+ indicators that report changes in both the cytoplasmic ([Ca2+]i) and the luminal ER ([Ca2+]ER) Ca2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca2+]ER but did not decrease the ER Ca2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP3R and only Orai3 channel supported the 2-APB-induced ER Ca2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca2+ leak but did not modify the ER Ca2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca2+]i response after TG but only when the ER store had been overloaded with Ca2+ by eliminating the acidic internal Ca2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca2+ leak but forms an ER Ca2+ leak channel that is limiting the overloading with Ca2+ of the ER store.  相似文献   

20.
It has been postulated that folic acid (folate) deficiency (FD) may be a risk factor for the pathogenesis of a variety of oxidative stress-triggered chronic degenerative diseases including diabetes, however, the direct evidence to lend support to this hypothesis is scanty. For this reason, we set out to study if FD can trigger the apoptotic events in an insulin-producing pancreatic RINm5F islet β cells. When these cells were cultivated under FD condition, a time-dependent growth impediment was observed and the demise of these cells was demonstrated to be apoptotic in nature proceeding through a mitochondria-dependent pathway. In addition to evoke oxidative stress, FD condition could also trigger nitrosative stress through a NF-κB-dependent iNOS-mediated overproduction of nitric oxide (NO). The latter compound could then trigger depletion of endoplasmic reticulum (ER) calcium (Ca2+) store leading to cytosolic Ca2+ overload and caused ER stress as evidence by the activation of CHOP expression. Furthermore, FD-induced apoptosis of RINm5F cells was found to be correlated with a time-dependent depletion of intracellular gluthathione (GSH) and a severe down-regulation of Bcl-2 expression. Along the same vein, we also demonstrated that FD could severely impede RINm5F cells to synthesize insulin and their abilities to secret insulin in response to glucose stimulation were appreciably hampered. Even more importantly, we found that folate replenishment could not restore the ability of RINm5F cells to resynthesize insulin. Taken together, our data provide strong evidence to support the hypothesis that FD is a legitimate risk factor for the pathogenesis of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号